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Abstract This article analyzes the variation in bike commuting in large American cities,

with a focus on assessing the influence of bike paths and lanes, which have been the main

approach to increasing cycling in the USA. To examine the role of cycling facilities, we

used a newly assembled dataset on the length of bike lanes and paths in 2008 collected

directly from 90 of the 100 largest U.S. cities. Pearson’s correlation, bivariate quartile

analysis, and two different types of regressions were used to measure the relationship

between cycling levels and bikeways, as well as other explanatory and control variables.

Ordinary Least Squares and Binary Logit Proportions regressions confirm that cities with a

greater supply of bike paths and lanes have significantly higher bike commute rates—even

when controlling for land use, climate, socioeconomic factors, gasoline prices, public

transport supply, and cycling safety. Standard tests indicate that the models are a good fit,

with R2 ranging between 0.60 and 0.65. Computed coefficients have the expected signs for

all variables in the various regression models, but not all are statistically significant.

Estimated elasticities indicate that both off-street paths and on-street lanes have a similar

positive association with bike commute rates in U.S. cities. Our results are consistent with

previous research on the importance of separate cycling facilities and provide additional

information about the potentially different role of paths vs. lanes. Our analysis also

revealed that cities with safer cycling, lower auto ownership, more students, less sprawl,

and higher gasoline prices had more cycling to work. By comparison, annual precipitation,

the number of cold and hot days, and public transport supply were not statistically sig-

nificant predictors of bike commuting in large cities.
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Introduction

The mounting body of evidence on the health benefits of cycling has led government

agencies, public health organizations, and medical journals to advocate more cycling as a

way to improve individual health as well as reduce air pollution, carbon emissions, noise,

traffic dangers, and other harmful impacts of car use (British Medical Association 1992;

Cavill et al. 2006; CEMT 2004; Dora and Phillips 2000; IOTF 2010; NACTO 2010;

USDHHS 1996, 2008; USDOT 1994, 2004, 2010d). Cities around the world have been

implementing a wide range of infrastructure, programs, and policies to encourage more

cycling (Fietsberaad 2010; Heinen et al. 2010; Krizek et al. 2009; Pucher et al. 2010). Most

American cities have focused on providing separate bicycling facilities such as off-street

bike paths and on-street bike lanes (Alliance for Biking and Walking 2010; NACTO 2010;

Pucher et al. 1999; USDOT 2010d). Past research suggests that separate cycling facilities

are associated with higher cycling levels. There is contradictory evidence, however, on the

impacts of different kinds of facilities. Some studies find that bike paths are associated with

higher cycling levels, but that lanes are not. Other studies find that lanes are related to more

cycling, but paths are not. Most prior research that distinguishes between paths and lanes

focuses on only one city per study. Most comparative analysis of different cities is

hampered by small sample size—usually fewer than 45 cities.

This article examines the link between cycling facilities and cycling levels by analyzing

new data on bike lanes and paths in 90 of the 100 largest U.S. cities. The League of

American Bicyclists and the Alliance for Biking and Walking collected the data for the

authors directly from planners, transportation experts, and government officials in each city

for the year 2008. The only comparable measure of bike lane supply available for all 90

cities was ‘centerline miles’ of roads with bike lanes. Data collected for bike paths

combined off-road facilities exclusively for cycling as well as multi-use paths shared by

cyclists, pedestrians, joggers, in-line skaters, and other non-motorized users. Our multiple

regression analysis focuses on measuring the relationship of bike paths and lanes to cycling

levels while controlling for cycling safety, socioeconomic factors, land-use, gasoline price,

public transport supply, and climate.

Determinants of cycling: the role of off-street paths and on-street lanes

Several studies have estimated the relationship of bike paths and lanes to cycling levels.

Results from aggregate cross-sectional studies indicate that there is a positive correlation

between cycling levels and the supply of bike paths and lanes (Dill and Carr 2003; LeClerc

2002; Nelson and Allen 1997; Parkin et al. 2008). Based on a sample of 18 small and large

U.S. cities, Nelson and Allen (1997) find that one additional mile of combined bike paths

and lanes per 100,000 residents is associated with a 0.069% increase in commuters cycling

to work. Based on a sample of 42 large U.S. cities, Dill and Carr (2003) find that each

additional linear mile of bike lanes per square mile of city area is associated with an

increase of roughly one percentage point in the share of bike commuters, even after

controlling for days of rain, automobile ownership, and state spending on walking and

cycling.
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Analyzing data from the 1990 and 2000 U.S. Census, Barnes et al. (2006) find that

increases in bike commute levels in Minneapolis and St. Paul were concentrated around

newly constructed bike paths and lanes. Cleaveland and Douma (2009) apply the same

methods in their case study analysis of six cities and report that the relationship of bike

facilities and cycling levels is mediated by local circumstances, such as network con-

nectivity, bike promotion programs, and location of bike facilities along commuting routes

leading to downtown.

Disaggregate, individual-level studies report a preference for separate paths and lanes

over cycling in traffic (Abraham et al. 2002; Akar and Clifon 2009; Broach et al. 2011; Dill

2009; Dill and Gliebe 2008; Howard and Burns 2001; Hunt and Abraham 2007; Krizek

et al. 2007; Lusk et al. 2011; Menghini et al. 2010; Shafizadeh and Niemeier 1997). In a

study of Calgary, Canada, Abraham et al. (2002) find that cycling along roads is perceived

to be two to four times as onerous as cycling on a bike path in a park. Dill and Gliebe

(2008) report that women and inexperienced cyclists in Portland, OR prefer riding on

bicycle paths, lanes, and low traffic volume roads over cycling on busy streets.

Findings on the relative importance of paths compared to lanes are contradictory.

Vernez-Moudon et al. (2005) report that household proximity to bike paths in Seattle, WA

increases the likelihood to cycle by 20%, but they find no effect for bike lanes. Using a

wide range of datasets and methods, Cervero et al. (2009), de Geus et al. (2008), and Dill

and Voros (2007) report no positive correlation between bike lanes and cycling levels. By

comparison, a Minneapolis, MN study by Krizek and Johnson (2006) finds an increased

likelihood of cycling for individuals living within 400 m of a bike lane, but no significant

impact of bike paths.

Controlling for other determinants of cycling, before-and-after studies show increased

levels of cycling after the installation of bike lanes, but report mixed results for bike paths

(City of Toronto 2001; City of Vancouver 1999; Cohen et al. 2008; Evenson et al. 2005).

A revealed preference survey by Dill (2009) finds that cyclists in Portland are willing to

increase trip distance and travel time to ride on bike paths compared to shorter, more direct

routes that require cycling on roads with motor vehicle traffic. Furthermore, a revealed

preference study by Aultman-Hall et al. (1998) finds that bike paths in Guelph, Ontario are

more likely to be used by recreational cyclists than by commuters.

In short, many studies conclude that there is a significant relationship between cycling

facilities and cycling levels, but the analyses cannot determine the direction of causation.

Moreover, regression analysis of cycling levels is almost always cross-sectional, thus

limiting inferences about changes over time. Measurements of cycling volumes before and

after the installation of specific facilities provide the simplest kind of time-series evidence,

but they almost never control for the range of other factors affecting cycling levels. Most

individual-level studies focus on one or a few cities. Such disaggregate, individual level

studies can help mitigate some of the problems of aggregate data analysis, but transferring

the results to other cities may be difficult because of policy, land use, and cultural dif-

ferences between cities. Moreover, single-city studies cannot control for the influence of

factors such as climate and gasoline price, which do not vary much within any particular

city. Aggregate studies usually have a much larger geographic range than disaggregate

studies, but they rely on few observations, such as Nelson and Allen (1997) and Dill and

Carr (2003), with samples of 18 and 42 cities, respectively. Thus, all studies of the impacts

of cycling facilities have their limitations. Our own study is no exception, but it enables

analysis of an extensive new dataset of 90 U.S. cities that permits differentiation between

bike paths and bike lanes while controlling for a range of other variables.
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Data sources and variables

Our regression analysis investigates the relationship between bike lanes and paths and

cycling levels in 90 of the 100 largest U.S. cities as determined by population estimates of

the 2008 American Community Survey (ACS) (USDOC 2009a). The ACS reports city data

following jurisdictional and governmental boundaries (USDOC 2010). City governments

provided information on the supply of bike paths and lanes within their official city

boundaries. Unless indicated otherwise, data for the variables used in our analysis pertain

to the area within the city government jurisdiction. Data for some variables, such as public

transport service supply, are only available for the metropolitan statistical area (MSA),

including the principal city, suburban areas, and smaller secondary cities. We explicitly

indicate in our analysis when we used regional instead of local data. The dependent

variable—cycling level—is measured at the city level in two different ways: (1) percentage

of commuters by bicycle—bike mode share—which controls for the number of workers in

each city; and (2) the number of bike commuters per 10,000 population, which controls for

population size.

Data on cycling levels and bikeway facilities

Data on the share of workers regularly commuting by bicycle were derived from the

American Community Survey (ACS) 2006–2008 three-year average sample. The specific

question posed to survey respondents was: ‘‘How did you usually get to work last week?’’

Respondents were asked to indicate only the main mode if they used more than one.

Pooling data from the ACS surveys for 2006, 2007, and 2008 increases sample size and

improves the reliability of estimates. Ideally, we would have measured cycling rates for all

trip purposes, but the ACS data only report information on commuting to work, and the

ACS is the only source of comparable travel data for all cities. The 2001 and 2009 National

Household Travel Surveys (NHTS) provide data for all trip purposes, but their sample sizes

are less than 3% as large as the ACS surveys and do not permit statistically reliable

estimates for individual cities.

Table 1 displays the top ten of the 90 cities in our sample based on three measures of

bike commute levels. Large cities dominate the list of total bike commuters (last column),

while cities in the Midwest, West, and Southwest have the highest share of bike commuters

on a per capita basis (first two columns).

The League of American Bicyclists and the Alliance for Biking and Walking collected

data for the authors on the supply of bike lanes and paths by directly contacting bike

planners, transportation officials, and bicycling experts in the 100 largest cities. Data for 10

of the 100 cities were not available even after multiple attempts to obtain the information.

In spite of the missing cities, the resulting database for 90 cities is the most current and

extensive source of information on the extent of bikeway networks in large U.S. cities.

Cities use different methods for recording the extent of their facilities. To correct for

that inconsistency and to ensure the comparability of data among cities, the League of

American Bicyclists and the Alliance for Biking and Walking used a uniform definition of

bike lanes: centerline miles of roads with bike lanes. In order to be included, bike lanes had

to be clearly designated with pavement markings and signage. They exclude shared bus

and bike lanes as well as ‘sharrowed’ lanes intended for joint use by motor vehicles and

bicycles. Calculating centerline miles of bike lanes requires adding the length of all

stretches of roadway with a bicycle lane. Centerline miles do not distinguish between

streets with bike lanes on only one side, in only one direction, and streets with bike lanes
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on both sides, serving both directions of travel. Thus, the centerline measure understates

bicycle facility supply on roads with bike lanes in both directions relative to roads with

bike lanes in only one direction. We had to accept that limitation of the centerline measure,

since it is the only comparable statistic all 90 cities could compute.

Bike paths comprised both exclusive off-road facilities for cycling as well as multi-use

paths intended for joint use by cyclists, pedestrians, joggers, in-line skaters, and other non-

motorized users. In fact, most bike paths in American cities are such multi-use paths, while

in Europe, they are often exclusively for cyclists, probably due to the much higher cycling

volumes needed to justify completely separate paths only for cyclists (Alliance for Biking

and Walking 2010; Fietsberaad 2010; USDOT 2010d).

Figure 1 plots the supply of bike paths per 100,000 population against bike lanes per

100,000 population for the 90 cities in our sample. Both variables were normalized by a

natural logarithm transformation. There is only a weak bi-variate correlation (Pearson’s

r = 0.2) between bike path and lane supply; and it is not statistically significant at

P \ 0.05. Thus, it is not necessarily the case that cities with many bike paths have many

bike lanes as well, nor that cities with few bike paths also have few bike lanes. The

graphical analysis suggests that cities in the western United States have a larger supply of

bike paths per capita than in other regions. That is confirmed by results of an Analysis of

Variance (ANOVA) which indicate that cities in the West Census Region1 have a larger

supply of bike lanes than cities in the Midwest, South, or Northeast (P \ 0.05). However,

there was no statistically significant difference in the supply of bike paths across U.S.

Census regions (P \ 0.05). Bivariate correlations were either weak or not statistically

significant (P \ 0.05) between our main explanatory variables and the control variables we

later introduce into our models. The Pearson correlation coefficients were statistically

significant but weak between bike path and lane supply (combined) and cycling safety

(-0.33), share of households without a car (-0.24), retail price of gasoline (?0.29), and

annual precipitation (-0.37). Bivariate correlations were both weak and not statistically

significant for the relationships between bike path and lane supply (combined) and share of

Table 1 Top ten of 90 of the 100 largest U.S. cities by daily bike commuting levels, 2006–2008

Rank % of commuters by bike Bike commuters per 10,000 population Bike commuters in 1,000

1 Portland, OR 4.7 Portland, OR 24.0 New York City, NY 24.0

2 Madison, WI 3.9 Madison, WI 22.2 Portland, OR 13.2

3 Minneapolis, MN 3.5 Minneapolis, MN 18.9 Chicago, IL 12.8

4 Boise, ID 3.4 Boise, ID 17.8 Los Angeles, CA 12.6

5 Seattle, WA 2.5 Seattle, WA 14.2 San Francisco, CA 10.7

6 San Francisco, CA 2.5 San Francisco, CA 13.5 Seattle, WA 8.1

7 Sacramento, CA 2.0 Washington, DC 9.9 Philadelphia, PA 7.5

8 Washington, DC 2.0 Sacramento, CA 8.9 Minneapolis, MN 6.8

9 Oakland, CA 1.9 Oakland, CA 8.8 Washington, DC 5.8

10 Tucson, AZ 1.8 Denver, CO 8.4 San Diego, CA 5.3

Source USDOC (2009a)

1 The western Census region includes Alaska, Arizona, California, Colorado, Idaho, Montana, Nevada,
New Mexico, Oregon, Utah, Washington, and Wyoming.
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students in the population (?0.11), compact land use2 (?0.06), public transport supply

(?0.03), and annual number of hot (?0.02) and cold days (-0.07).

Control variables

In estimating the relationship between bikeways and bike commuting, our multiple

regression analysis controls for other determinants of cycling commonly cited in the lit-

erature. We describe these variables and their measurement in detail below. Summary

statistics of our main explanatory and control variables are presented in Table 2.

Cycling safety is an important determinant of cycling levels. The causation probably

goes in both directions. Several studies confirm that increased cycling safety encourages

more people to cycle (Alliance for Biking and Walking 2010; Fietsberaad 2006, 2010;

Jacobsen et al. 2009a; Pucher and Buehler 2008; USDOT 2010d). Conversely, the concept

of ‘safety in numbers’ proposes that, as more people cycle, it becomes safer because more

cyclists are more visible to motorists, and an increasing percentage of motorists are also

cyclists, which probably makes them more considerate of cyclists when driving. As cycling

grows, it is increasingly viewed as normal, gains legitimacy as a means of travel, and
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generates more public and political support for more and better cycling facilities.

Regardless of which explanation is correct, several studies find significant time-series

as well as cross-sectional evidence of ‘safety in numbers’ (Elvik 2009; Jacobsen 2003;

Robinson 2005).

In our analysis, we measured safety as cyclist fatalities per 10,000 bike commuters at the

state level. The National Highway Safety Administration (NHTSA) reports annual fatalities

for states but not for cities. Reliable cyclist fatality data are not available at the city level.

Cyclist fatalities are rare events, so cities with little cycling have few fatalities and do not

collect such data systematically. Thus, the fatality rates used in our analysis refer to cycling

safety in the overall state and not the city itself. In addition to that geographic discrepancy,

the fatality rate is only a rough approximation of actual cycling safety. Cyclist fatalities

result from all trip purposes and not just the trip to work, but the measure of exposure in the

denominator of the fatality rate includes only bike commuters. As mentioned earlier, the

only nationally comparable source of travel data for all trip purposes is the NHTS. Because

the NHTS sample size is less than 3% as large as the ACS sample, it cannot be disaggre-

gated to the state or city level with statistical reliability to calculate total bike trips for all trip

purposes. Thus, the fatality rate we calculated is only a very rough approximation, but it

helps capture the sharp differences in cycling safety across states: ranging from less than 2

fatalities per 10,000 bike commuters in Alaska, Colorado, Minnesota, and Oregon to over

20 in Alabama (Alliance for Biking and Walking 2010).

Two socioeconomic variables we included were share of students in the population and

percent of households without a car. Previous studies find that individuals in households

with more cars are less likely to ride a bicycle, while students are more likely to cycle (Dill

and Carr 2003; Heinen et al. 2010; Pucher and Buehler 2006). We did not include per-

capita income because of its high correlation with car ownership (Pearson’s r = 0.6). The

most important impact of income on cycling levels is via car ownership (Dill and Voros

2007; Heinen et al. 2010; Stinson and Bhat 2003). Moreover, the two most recent national

travel surveys for the United States, the 2001 and 2009 NHTS, reveal no statistically

significant difference in cycling levels among income groups, but a large and statistically

significant difference by car ownership levels (Buehler et al. 2011; Pucher et al. 2011a;

USDOT 2010b, c).

Previous studies have shown that cycling levels are higher in dense, mixed-use

developments with short trip distances and proximity of households to destinations such as

offices, stores, and restaurants (Baltes 1997; Ewing and Cervero 2001, 2010; Guo et al.

2007; Handy 1996; Litman 2007a; Moudon et al. 2005; Parkin et al. 2008; Pucher and

Buehler 2006; Zahran et al. 2008). Moreover, studies find that a grid-pattern road network

increases levels of cycling because short blocks and frequent intersections provide easier

bike access and more flexible bicycle route choice to most destinations (Ewing and

Cervero 2010).

In our study, we approximate the influence of the built environment by using the

composite sprawl index that was developed by Ewing et al. (2002). The sprawl index

combines 22 different variables measuring various aspects of urban form, mix of land uses,

density, and street network connectivity. Of the cities included in our study, the metro-

politan areas with the worst sprawl ratings (lowest numerical values) were Riverside-

San Bernardino, CA (14.2), Greensboro, NC (46.8), Raleigh, NC (54.2), and Atlanta, GA

(57.7). The metropolitan areas with the best sprawl ratings (highest numerical values)

were: New York City, NY (177.8), San Francisco, CA (146.8), and Honolulu, HI (140.2).

Although the sprawl index refers to the metropolitan area as a whole, it is also useful for

comparing land-use characteristics of the central cities included in our study. For example,
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the index specifically considers several measures of downtown strength and overall

compactness of the urban area. There is no comprehensive land-use index that provides

comparable information for central cities only. Thus, we had to assume that the relative

differences in land use among metropolitan areas as a whole reflect the relative differences

among their central cities.

Public transport may also influence cycling levels. Some studies show that coordinating

cycling with public transport can encouraging more cycling as well as more public transport

use (Brons et al. 2009; Givoni and Rietveld 2007; Hegger 2007; Martens 2004, 2007; TRB

2005; USDOT 1998). Other studies, mainly from Europe, suggest that public transport may

compete with bicycling for short trip distances in cities with good public transport supply

(Fietsberaad 2010; Heinen et al. 2010; Pucher and Buehler 2007; Schwanen 2002). Our

study includes a variable measuring public transport vehicle miles per capita from the

National Transit Database (NTD) for the year 2008 (USDOT 2008). Data were only

available at the metropolitan level, since service areas of public transport agencies almost

always extend beyond central city boundaries into the suburbs (USDOT 2008).

Few studies specifically examine the impact of gasoline prices and taxes on cycling

levels (Pucher and Buehler 2006; Rashad 2009). However, many studies find that higher

gasoline prices lead to less driving (Buehler 2010; DeJong and Gunn 2001; Epsey 1998;

Hanly et al. 2002; Litman 2007b). In our study we use average gasoline prices by state for

the years 2006–2008, as reported by the Energy Information Administration (EIA) (US-

DOE 2010a). Comparable data on gasoline prices in each of the 90 cities in our study were

not available for the years 2006–2008. The state data are only proxies for the unavailable

city data, but at least they capture major differences in state gasoline tax rates, fuel

distribution costs, and state standards for fuel composition, all of which help determine the

final retail price of gasoline (USDOE 2010a, b). The state rates do not, however, reflect

variation within states in gasoline taxes and prices.

Previous research shows that climate and topography can affect cycling levels. Several

studies find that cycling is deterred by rain as well as by very cold or hot weather (Baltes

1997; Bergström and Magnusson 2003; Dill and Carr 2003; Gatersleben and Appleton

2007; Heinen et al. 2010; Nankervis 1999; Stinson and Bhat 2003; Winters et al. 2007).

Our analysis includes three variables measuring weather and climate: (1) average annual

number of days that reach temperatures of over 90�F; (2) average number of days below

32�F; and (3) annual precipitation levels. We used 30 year average data for each city

provided by the National Climatic Data Center (2010).

Almost all studies find that flat topography facilitates cycling, and that cyclists choose

routes that avoid steep gradients (Hunt and Abraham 2007; Menghini et al. 2010; Rietveld

and Daniel 2004; Timperio et al. 2006; Vandenbulcke et al. 2011). Topography uninterrupted

by harbors, bays, and rivers also favors cycling by enabling more direct routes (Pucher et al.

2011c). However, standardized indices of topography do not yet exist for the cities in our

sample. Thus, we were not able to control for the influence of topography on cycling levels.

Similarly, it was not possible to include variables measuring the extent and quality of the

many other policies and programs that might potentially affect cycling levels (Heinen et al.

2010; Krizek et al. 2009; Pucher et al. 2010). These measures include, for example, bike

parking, bike racks on buses, bike sharing programs, cycling training courses, media cam-

paigns, and educational events (APBP 2002; Brons et al. 2009; Fietsberaad 2010; Givoni and

Rietveld 2007; Hegger 2007; Hunt and Abraham 2007; Martens 2007; Netherlands Ministry

of Transport 2009; Noland and Kunreuther 1995; Taylor and Mahmassani 1996; TRB 2005;

Wardman et al. 2007). Comparable data for these programs are not available for most of the

90 cities.
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Bivariate relationships

Bicycling to work is positively correlated with both bike paths and bike lanes (see Table 3,

last column). Estimates of the correlation coefficients between bike commuting and bike

lanes are slightly larger than for bike paths, but the magnitude of the coefficients is not

significantly different at P \ 0.05. Our grouping of cities into quartiles of bike path and lane

Table 3 Bike commute levels by quartile of independent variables and bivariate Pearson’s correlations for
the 90 largest U.S. cities

Share of bike commuters by quartile
of independent variable

Difference
fourth
minus
first quartile

Bivariate
correlation
with share
of bike
commuters

First
quartile

Second
quartile

Third
quartile

Fourth
quartile

Bike lanes per 100,000 pop. 0.4 0.7 0.9 1.3 ?0.9** 0.5**

Bike paths per 100,000 pop. 0.5 0.8 0.8 1.2 ?0.7** 0.3**

Bike paths and lanes per 100,000 pop. 0.5 0.6 0.7 1.5 ?1.0** 0.5**

Cyclist fatality rate 1.5 0.6 0.6 0.4 -1.1** -0.5**

% College students 0.4 0.6 1.1 1.3 ?0.8** 0.5**

% Households without car 0.8 0.5 1.1 1.0 ?0.2* 0.1

Sprawl index 0.5 0.8 0.9 1.1 ?0.6** 0.2*

Transit revenue miles per capita 0.6 0.6 1.0 1.1 ?0.5* 0.1

Gas price 0.4 0.7 0.8 1.5 ?1.1** 0.5**

Days above 90�F 1.4 0.6 0.8 0.6 -0.8** -0.3**

Days below 32�F 0.9 0.8 0.5 1.1 ?0.2 0.1

Annual inches of precipitation 0.8 1.1 0.7 0.5 -0.5** -0.2**

Bike commuters per 10,000 population
by quartile of independent variable

Difference
fourth
minus first
quartile

Correlation
with bike
commuters
per 10,000
population

First
quartile

Second
quartile

Third
quartile

Fourth
quartile

Bike lanes per 100,000 pop. 1.7 3.3 4.7 6.6 ?4.8** 0.5**

Bike paths per 100,000 pop. 2.4 3.7 3.9 6.2 ?4.0** 0.3**

Bike paths and lanes
per 100,000 pop.

2.5 2.7 3.5 7.8 ?5.3** 0.5**

Cyclist fatality rate 7.6 2.7 3.0 1.9 -4.2** -0.5**

% College students 2.0 2.7 5.3 6.4 ?4.4** 0.5**

% Households without car 3.9 2.2 5.6 4.8 ?0.9* 0.1

Sprawl index 2.4 4.1 4.3 5.4 ?3.0** 0.2*

Transit revenue miles per capita 3.0 2.7 5.2 5.7 ?2.7** 0.1

Gas price 1.8 3.6 4.0 7.4 ?5.6** 0.5**

Days above 90�F 7.1 3.0 3.9 2.7 -3.7** -0.3**

Days below 32�F 4.5 4.0 2.4 5.5 ?1.0 0.1

Annual inches of precipitation 4.0 5.7 3.6 2.1 -1.9** -0.2**

** Significant at the 95% level

* Significant at the 90% level
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supply shows that bike commuting in cities with the most bike lanes per 100,000 population

(4th quartile) are three to four times higher than in cities with the fewest bike lanes (1st

quartile). The difference between quartiles is less pronounced for bike paths—with slightly

more than twice as much bike commuting in the 4th compared to the 1st quartile. The table

also displays the combined relationship of bicycle paths and lanes on bike commuting.

There is three to four times as much bike commuting in cities with the most paths and lanes

(4th quartile) as in cities with the least bike path and lane supply (1st quartile).

The correlation coefficients for the control variables suggest the same directions of

relationships as previous studies we reviewed, but not all coefficients are statistically

significant. City cycling levels and state bike fatality rates have a statistically significant

negative correlation. The actual relationship might be stronger, but the state data are

obviously an imperfect proxy for city cycling safety. Cities with a higher percentage of

students have higher levels of bike commuting. A higher share of households without a car

is associated with more bike commuting, but the bivariate correlation is not statistically

significant. Bicycle commuting levels are higher in central cities of more compact

metropolitan areas. Cities with more public transport supply per capita have higher cycling

levels, but the correlation coefficient is not statistically significant. State gasoline retail

prices and city cycling levels have a statistically significant positive correlation—consis-

tent with the theory that higher costs of driving encourage cycling. As found by earlier

studies, extreme weather conditions deter cycling. Our dataset shows that cycling levels are

lower in cities with more days per year with temperatures of 90�F or higher and more

annual precipitation. We found no statistically significant relationship between the number

of cold days per year and bike commuting.

Multiple regression analysis

The quartile and correlation analysis presented above investigate the relationship between

bike commuting and each independent variable, one at a time. The multiple regressions

presented below examine the relationship of cycling levels and bike paths and lanes while

controlling for safety, socioeconomics, land use, public transport supply, gasoline price, and

climate.

We estimated two sets of models. The first model is a log–log Ordinary Least Square

(OLS) regression with the natural log of bike commuters per 10,000 population as

dependent variable. The second model is a Binary Logit Proportions Model with the share

of bike commuters in each city as dependent variable. In both types of models the inde-

pendent variables are expressed as natural log to assure a more normal distribution of

otherwise skewed explanatory variables.

The log–log specification for the first set of models has two advantages. First, it

normalizes the skewed independent and dependent variables, thus helping to meet

assumptions of the OLS regression. Second, it allows interpreting the regression coeffi-

cients directly as elasticities or percentage changes in bike commuting, which makes the

results more intuitive and easier to understand.3

3 Seven cities reported 0 miles of bike lanes or bike paths. These cities would have been lost in our models,
because the natural logarithm of 0 is not defined. Thus, we followed the common procedure of transforming
the bike lane and path per 100,000 population variable by adding 1, which yields a log value of 0 for the 7
cities. We also estimated the models without this transformation, with only 83 cities. Significance, sign, and
magnitude of coefficients and goodness of fit were very similar to the results of the models presented in this
paper.

Transportation (2012) 39:409–432 419

123



T
a

b
le

4
M

u
lt

ip
le

re
g
re

ss
io

n
an

al
y
si

s
o
f

b
ik

e
co

m
m

u
te

rs
p
er

1
0
,0

0
0

p
o
p
u
la

ti
o
n

an
d

b
ik

e
co

m
m

u
te

sh
ar

e
(c

o
n
ti

n
u
es

o
n

n
ex

t
p
ag

e)

O
L

S
re

g
re

ss
io

n
o

f
ln

(b
ik

e
co

m
m

u
te

rs
p
er

1
0
,0

0
0

p
o
p
u
la

ti
o
n
)

B
in

ar
y

lo
g
it

p
ro

p
o
rt

io
n
s

m
o
d
el

fo
r

sh
ar

e
o

f
b

ik
e

co
m

m
u

te
rs

a

M
o

d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d

el
4

M
o

d
el

5
M

o
d
el

6
M

o
d
el

7
E

la
st

ic
it

y
at

m
ea

n

ln
(b

ik
e

la
n

es
p

er
1

0
0

,0
0

0
p

o
p

u
la

ti
o

n
)

0
.3

61
0

.3
10

0
.3

0
5

0
.2

99
0

.3
14

0
.3

11
0

.4
0

4
0

.2
5

0

(5
.8

5
)*

*
(3

.7
8

)*
*

(3
.7

6
)*

*
(3

.6
9

)*
*

(3
.7

8
)*

*
(5

.1
4

)*
*

(5
.6

5
)*

*
(6

.1
9

)*
*

ln
(b

ik
e

p
at

h
s

p
er

1
0

0
,0

0
0

p
o

p
u

la
ti

o
n

)
0

.2
67

0
.2

45
0

.3
0

2
0

.1
81

0
.2

51
0

.2
30

0
.1

4
7

0
.0

9
1

(2
.7

5
)*

*
(2

.8
8

)*
*

(3
.5

5
)*

*
(2

.2
6

)*
*

(2
.9

8
)*

*
(2

.9
0

)*
*

(2
.0

9
)*

*
(2

.0
8

)*
*

ln
(f

at
al

it
y

ra
te

p
er

1
0

,0
0

0
b

ik
e

co
m

m
u

te
rs

)
2

0
.3

6
6

2
0

.3
97

2
0

.4
12

2
0

.2
7

7
2

0
.5

14
2

0
.3

20

(2
.3

0
)*

*
(2

.4
5

)*
(2

.5
1

)*
*

(1
.9

7
)*

(4
.3

5
)*

*
(4

.3
5

)*
*

ln
(p

er
ce

n
t

o
f

st
u

d
en

ts
in

p
o

p
u

la
ti

o
n

)
0

.8
59

0
.9

0
4

0
.8

63
0

.8
08

0
.8

79
0

.5
4

4
0

.3
4

0

(3
.7

0
)*

*
(3

.7
4

)*
*

(3
.4

9
)*

*
(3

.5
3

)*
*

(4
.3

9
)*

*
(2

.5
2

)*
*

(2
.5

0
)*

*

ln
(p

er
ce

n
t

o
f

h
o

u
se

h
o

ld
s

w
it

h
o

u
t

ca
r)

0
.3

39
0

.3
7

0
0

.3
78

0
.3

00
0

.4
9

9
0

.3
1

0

(2
.5

5
)*

*
(2

.7
7

)*
*

(2
.8

0
)*

*
(2

.7
2

)*
*

(3
.5

7
)*

*
(3

.5
2

)*
*

ln
(s

p
ra

w
l

in
d
ex

)
0

.3
62

0
.4

3
6

0
.4

26
0

.3
53

0
.3

4
0

0
.2

1
0

(2
.2

9
)*

*
(2

.5
5

)*
(2

.8
4

)*
*

(2
.1

3
)*

*
(2

.4
6

)*
*

(2
.3

3
)*

*

ln
(t

ra
n

si
t

re
v
en

u
e

m
il

es
o

f
se

rv
ic

e
p

er
ca

p
it

a)
2

0
.1

0
6

2
0

.0
6
4

0
.0

2
8

-
0

.0
7
0

2
0

.2
6
6

2
0

.1
4
0

(0
.5

8
)

(0
.3

3
)

(0
.1

7
)

(0
.3

7
)

(1
.6

3
)

(1
.3

9
)

ln
(s

ta
te

g
as

re
ta

il
p

ri
ce

)
5

.1
61

6
.6

5
5

5
.7

52
4

.5
44

5
.1

66
4

.9
0

5
3

.0
0

0

(1
.7

6
)*

(2
.1

7
)*

*
(1

.9
2

)*
(1

.6
5

)*
(2

.1
4

)*
*

(2
.1

8
)*

*
(2

.1
9

)*
*

ln
(a

n
n

u
al

n
u

m
b

er
o

f
d

ay
s

ab
o

v
e

9
0
�F

)
0

.0
2
5

2
0

.0
4
9

0
.0

0
5

0
.0

2
2

0
.0

1
2

0
.0

1
0

(0
.2

8
)

(0
.5

9
)

(0
.0

5
)

(0
.2

5
)

(0
.1

4
)

(0
.1

4
)

ln
(a

n
n

u
al

n
u

m
b

er
o

f
d

ay
s

b
el

o
w

3
2
�F

)
2

0
.0

4
8

2
0

.0
2
5

2
0

.0
2
9

2
0

.0
4
8

2
0

.0
2
6

2
0

.0
2
0

(1
.6

0
)

(0
.7

7
)

(1
.0

0
)

(1
.5

5
)

(0
.9

3
)

(0
.0

9
)

ln
(a

n
n

u
al

in
ch

es
o

f
p

re
ci

p
it

at
io

n
)

0
.1

0
5

2
0

.0
3
2

0
.2

1
2

0
.1

0
6

0
.2

3
3

0
.1

4
0

(0
.5

8
)

(0
.1

9
)

(1
.2

0
)

(0
.5

7
)

(1
.5

0
)

(1
.5

2
)

420 Transportation (2012) 39:409–432

123



T
a

b
le

4
co

n
ti

n
u
ed

O
L

S
re

g
re

ss
io

n
o

f
ln

(b
ik

e
co

m
m

u
te

rs
p
er

1
0
,0

0
0

p
o
p
u
la

ti
o
n
)

B
in

ar
y

lo
g
it

p
ro

p
o
rt

io
n
s

m
o
d
el

fo
r

sh
ar

e
o

f
b

ik
e

co
m

m
u

te
rs

a

M
o

d
el

1
M

o
d
el

2
M

o
d
el

3
M

o
d

el
4

M
o

d
el

5
M

o
d
el

6
M

o
d
el

7
E

la
st

ic
it

y
at

m
ea

n

C
o

n
st

an
t

2
0

.2
6
5

2
3

1
.8

4
3

2
4

1
.1

8
6

2
3

6
.0

6
1

2
2

7
.0

2
6

2
3

2
.6

3
9

-
3

4
.6

6
9

(1
.2

4
)

(1
.9

4
)*

(2
.4

0
)*

*
(2

.1
6

)*
*

(1
.6

9
)*

(2
.3

9
)*

*
(2

.7
4

)*
*

O
b

se
rv

at
io

n
s

9
0

9
0

9
0

9
0

9
0

9
0

9
0

A
d

ju
st

ed
R

2
0
.3

3
0
.6

5
0
.6

2
0
.6

3
0
.6

3
0
.6

4
P

se
u
d
o

L
L

(I
n
te

rc
ep

t)
:

-
9

.0
4
8

F
-s

ta
ti

st
ic

2
7

.4
4

1
8

.1
4

1
6

.3
1

1
7

.0
0

1
8

.3
7

2
6

.0
0

P
se

u
d

o
L

L
(F

u
ll

):
-

3
.3

9
9

0
.0

0
0

*
*

0
.0

0
0

*
*

0
.0

0
0

*
*

0
.0

0
0

*
*

0
.0

0
0

*
*

0
.0

0
0

*
*

P
se

u
d

o
R

2
(M

cF
ad

d
en

):
0

.6
2

N
o

te
co

ef
fi

ci
en

ts
o

f
st

at
is

ti
ca

ll
y

si
g

n
ifi

ca
n

t
v

ar
ia

b
le

s
sh

o
w

n
in

b
o

ld
p

ri
n

t

A
b

so
lu

te
v

al
u
e

o
f

ro
b

u
st

t/
z

st
at

is
ti

cs
in

p
ar

en
th

es
es

a
L

o
g

is
ti

c
re

g
re

ss
io

n
es

ti
m

at
ed

v
ia

S
T

A
T

A
G

L
M

(g
en

er
al

iz
ed

li
n

ea
r

m
o

d
el

s)
w

it
h

lo
g

it
li

n
k

fu
n

ct
io

n
,

b
in

o
m

ia
l

d
is

tr
ib

u
ti

o
n
,

an
d

ro
b

u
st

st
an

d
ar

d
er

ro
rs

*
S

ig
n

ifi
ca

n
t

at
1

0
%

*
*

S
ig

n
ifi

ca
n

t
at

5
%

Transportation (2012) 39:409–432 421

123



Models 1 through 6 in Table 4 present the results of the OLS regression with the natural

log of bike commuters per 10,000 population as dependent variable. Model 1 only includes

bike path and lane supply as explanatory variables without controlling for other factors.

Results confirm the positive correlation between cycling levels and bike path and lane

supply from the bivariate analysis. Path and lane supply alone account for 33% of the

variability in bike commuting (Adj. R2 = 0.33). However, this model is underspecified and

likely suffers from omitted variables bias, since theoretically relevant control variables are

missing. Model 2 includes control variables for cycling safety, socioeconomics, land use,

public transport supply, gasoline prices, and climate. The independent variables of Model 2

have joint significance at the 99% level (F = 18.1) and account for 65% of the variability

in bike commuters per capita (Adj. R2 = 0.65).

Coefficients are consistent with relationships reported in most other studies, but not all

estimators are statistically significant. Both bike lanes and bike paths per 100,000 popu-

lation are significant predictors for bike commuting. A 10% greater supply of bike lanes is

associated with a 3.1% greater number of bike commuters per 10,000 population. Simi-

larly, a 10% greater supply of bike paths is associated with a 2.5% higher level of bike

commuting. As in our previous correlation analysis, a t-test comparison shows that the

coefficients for bike lanes and paths are not significantly different from each other at the

95% confidence level.

Cycling safety is statistically significant as well. A 10% higher cyclist fatality rate per

10,000 commuter cyclists is associated with 3.7% fewer bike commuters per 10,000 pop-

ulation. A 10% higher share of students in the population is associated with 8.6% more bike

commuting. A 1% increase in the retail price of gasoline is associated with a 5.2% increase in

cycling levels. The cross-price elasticity of bike commuting with respect to gasoline price

may seem high, but it is in line with other models estimating the relationship between

gasoline prices and cycling levels (Pucher and Buehler 2006; Rashad 2009). The coefficients

for public transport supply and the climate variables—number of days per year with tem-

peratures of 90�F or higher, 32�F or lower, and precipitation—are not statistically significant.

Models 3 through 6 present regression results for reduced models, excluding explana-

tory variables to control for potential multicollinearity and endogeneity. For example, prior

research suggests that bike paths and lanes contribute to lower cycling fatality rates

(CEMT 2004; Fietsberaad 2010; Lusk et al. 2011; Pucher and Buehler 2008; Reynolds

et al. 2009). Possible multicollinearity due to the inclusion of both cyclist fatality rate and

bikeway supply variables in our model may siphon off strength from the bike path and lane

coefficients. In our dataset of 90 cities, bivariate Pearson’s correlations between the fatality

rate and the supply of bike paths and lanes are below 0.3, and tests for multicollinearity do

not indicate any serious problem.4,5 Endogeneity is a second potential problem arising

from the inclusion of the cyclist fatality rate variable, since ‘safety in numbers’ suggests

that cycling safety increases with higher cycling levels (Jacobsen 2003; Jacobsen et al.

2009b). Model 3 excludes the cyclist fatality rate variable in order to test for the possible

distorting influence of any multicollinearity and endogeneity problems caused by its

inclusion in the model. The Model 3 estimate of the coefficient for bike path supply is only

slightly larger (?0.05) than in Model 2—possibly related to greater safety of off-street

4 Variance Inflation Factor (VIF) yields scores for individual variables below 2.7 and a score of 1.9 for the
overall equation. Tolerance values are all above 0.4.
5 A possible reason for this low correlation may be that state cyclist fatality rates are imperfect proxies for
city fatality rates.
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facilities (Lusk et al. 2011). T-tests show that the estimated coefficients for bike lanes, bike

paths, and all other variables in Model 3 are not statistically different from Model 2.

Including car access and the sprawl index as explanatory variables may also introduce bias

into Model 2. Some studies suggest that individuals who cycle more are less likely to own an

automobile (Dill and Voros 2007; Parkin et al. 2008; Stinson and Bhat 2003). Similarly,

studies show that individuals who prefer to cycle more may choose to live in more compact

communities (Heinen et al. 2010; Krizek et al. 2009). Inclusion of these two variables might

cause simultaneous equations bias, since cycling levels may also affect the choice to own a car

or to live in a compact community. Moreover, car access and sprawl may themselves be

negatively correlated with each other, since studies show that individuals living in compact

urban areas own fewer cars (Cervero 2003; Ewing et al. 2002, 2008). To test for the possible

distorting effects caused by potential simultaneous equations bias and multicollinearity,

Models 4 and 5 omit the car access and the sprawl index variables. Similar to our findings in

the reduced Model 3, t-test comparisons show that the magnitude and significance of coef-

ficients of the remaining variables in Models 4 and 5 do not change significantly from those

estimated in Model 2, where all the variables were entered into the equation.

Finally, Model 6 presents results of a reduced model including only statistically signifi-

cant variables. This model confirms results from Models 2 through 5, but probably suffers

from omitted variables bias. In summary, goodness of fit measures and the direction, mag-

nitude, and significance of the model, coefficients are very similar for Models 2 through 6. In

all models, the coefficients for the key explanatory variables of interest—bike paths and bike

lanes—remain significant, positive, and are not statistically different from each other at the

95% confidence level. Model 2 seems preferable, because it includes all theoretically rele-

vant variables available for this study, and is thus less prone to omitted variable bias.

We also tested the robustness of our results by re-estimating Model 2 excluding cities

with extreme values for the explanatory variables. Such outliers, for example, included

cities with the most or least bikeway supply, the most extreme climates, highest and lowest

car ownership levels, highest and lowest student share, highest and lowest gasoline prices,

and most and least public transport supply. The coefficients estimated for Model 2 without

the outliers were similar to our original estimates for the entire sample of 90 cities pre-

sented in Table 4.

To test further the robustness of our results, we estimated an additional equation,

presented as Model 7 in Table 4, using the share of bike commuters in each city as the

dependent variable. For this dependent variable, an OLS regression might estimate values

beyond the range of actual possible values of the bike share of commuters (0–1.0). To

address this issue, we followed Xing et al. (2010) by estimating a non-linear Binary Logit

Proportions Model for bicycle mode share.6 This estimation technique transforms the

dependent variable into the ‘log of odds’ of the bike share of commuters and approximates

a nonlinear Maximum Likelihood estimation (Xing et al. 2010). Transformation of the

dependent variable and nonlinear estimation of the model assure that predicted mode

shares lie between 0 and 1.0.

Model 7 displays the results of the Binary Logit Proportions regression. Standard test

statistics suggest the model is a good fit. For example, McFadden’s Pseudo R2 is 0.62. All

variable coefficients are consistent with the direction of relationships reported by most other

studies. Similar to Models 1 through 6, the coefficients for bike paths and lanes are sig-

nificant and positive, even after using this very different, non-linear estimation technique.

6 For an alternative approach to estimating fractional response variables using a so-called ‘quasi-likelihood
estimation method,’ see Papke and Wooldridge (1996).
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The coefficient estimate for lanes is larger than for paths in Model 7, but as in Models 1

through 6, the two coefficients are not significantly different from each other at the 95%

confidence level.

The last column of Table 4 presents elasticities for the Binary Logit Proportions Model,

setting all other variables at their means. Estimated elasticities from the linear OLS log–log

regression model and elasticities (at the mean) from the non-linear Binary Logit Propor-

tions model are not comparable because of differences in functional form, estimation

technique, and dependent variables. The significance, direction, and magnitude of coeffi-

cients from Models 1 through 7 are similar. In particular, both estimation techniques yield

statistically significant positive coefficients for the two main variables of interest: bike

paths and bike lanes.

Limitations of the analysis

The cross-sectional analysis in our study aims at explaining differences in cycling rates

among cities but cannot be used to predict changes over time. Moreover, as in any cross-

sectional regression analysis, none of our models can prove causality, although the sig-

nificant associations we measured are consistent with the hypothesis that bike paths and

lanes encourage more cycling. Our analysis is also limited by its reliance on aggregate,

city-level data, which mask variations within cities, among neighborhoods, and individ-

uals. The results suggest a statistically significant relationship between bike paths and lanes

and cycling at the city level, but results do not permit conclusions about individual travel

behavior.

In addition to the inherent limitations of cross-sectional regression analysis and

aggregate data, there is a problem of endogeneity among some of the variables in our

models. Cycling levels and the extent of the bikeway network almost certainly affect each

other, so that causation is probably in both directions. In this paper, we have focused on the

role of bike paths and lanes in explaining variation among cities in cycling levels. Con-

versely, however, high cycling levels might help explain the provision of a large supply of

bike paths and lanes. Endogeneity and simultaneous equations bias are potentially serious

problems in our regression analysis because the key explanatory variables—bike paths and

bike lanes—are also a function of cycling levels, the dependent variable.

Three of the control variables may cause additional endogeneity problems. For example,

cycling safety and car ownership may be influenced by cycling levels, just as cycling levels

may be influenced by these two control variables. Land use might also be a function of

cycling rates, but only in the long run, if cyclists move to compact, mixed-use neigh-

borhoods. To explore the potential bias introduced by such endogeneity, Models 3, 4, and 5

in Table 4 remove cycling fatality rate, car ownership, and land use from the model—one

at a time. Coefficients for the other variables and goodness of fit measures do not change

significantly, suggesting that inclusion of the control variables does not cause serious

endogeneity problems in the models. At any rate, exclusion of the variables would be

theoretically incorrect and would cause underspecification bias.7

7 In an attempt to model the simultaneous dependencies among the variables, we experimented with several
alternative instrumental variables to estimate a simultaneous equation system using two-stage regressions.
Unfortunately, none of the available variables in the dataset were sufficiently exogenous or strong enough to
serve as instrumental variables. They failed on one or more criteria required for statistically robust and valid
instrumental variables: (1) underidentification (Anderson LM statistic), (2) weak identification (Cragg–
Donald Wald F statistic), (3) overidentification (Sargan statistic), (4) or robust instrument inference
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Aside from methodological limitations, there are problems with the available data on

bike paths and lanes. As noted earlier, the centerline measure of bike lanes does not

distinguish between streets with bike lanes on only one side, in only one direction, and

streets with bike lanes on both sides, serving both directions of travel. Clearly, bike lanes

on both sides of a street provide more supply than a bike lane on only one side of the street.

In addition, the data do not distinguish between the specific nature and quality of different

types of lanes. For example, bike lanes have varying widths, markings, signage, coloring,

and intersection treatments. They can be on the right or left side of the street, or even

between traffic lanes. Some bike lanes have buffers or barriers of various sorts to separate

them from motor vehicle traffic. Moreover, cities have different policies about maintaining

bike lanes and keeping them clear of snow, debris, and motor vehicles.

Similar to bike lanes, bike paths vary in their width, pavement, design, and especially in

the extent to which they are shared with other users such as pedestrians. Indeed the term

‘bike path’ is a bit of a misnomer in the USA. Most bike paths included in U.S. statistics

are simply multi-use paths shared with pedestrians (Alliance for Biking and Walking 2010;

Pucher et al. 1999). In contrast, bike paths in most northern European cities are completely

separate facilities for the exclusive use of cyclists (Fietsberaad 2006, 2010; Pucher and

Buehler 2008; Pucher et al. 2010). Thus, bike paths in the USA might have less impact on

cycling levels than the higher-quality, fully separate bike paths in the Netherlands,

Germany, and Denmark. Some mixed-use paths in the USA provide suggestive markings

to help separate cyclists from pedestrians, but most do not. Some bike paths require cyclists

to dismount when crossing a road, while others stop motor vehicles at crossings and give

cyclists the right of way. None of the 90 cities in our dataset provided detailed information

on those sorts of variations in the types of bike paths, although these differences may be

important for cyclists.

Another limitation of our analysis is that the measure of cycling levels used as the

dependent variable only includes daily bike commuters and thus excludes bike trips for all

other trip purposes. According to the 2009 NHTS, the journey to work only accounts for

12% of all bike trips (Pucher et al. 2011a; USDOT 2010b). The lack of city-level data on

cycling for all trip purposes restricts the inferences that can be drawn from our analysis. It

seems likely that regular bike commuters have different characteristics and preferences

than recreational cyclists. Thus, the coefficients estimated in our models for the various

Footnote 7 continued
(Anderson–Rubin Wald test). The best instrumental variable in the dataset was city land area—since area is
fully exogenous and correlated with the total number of bike commuters and the extent of bike paths and
lanes. The technical estimation procedure of two-stage least squares (2SLS) required combining the length
of bike paths and lanes into one variable, because there was only one instrumental variable available.
Moreover, the model was re-specified with the log of total number of bike commuters as dependent variable
and the log of total length of bike paths and lanes as regressor. This model satisfied most of the statistical
tests for appropriateness of the instrument, but failed to reject the null hypothesis of the Sargan test for
overidentification—which casts some doubt on the validity of the instrument.

Estimating a 2SLS equation with this imperfect instrumental variable yields results for the bikeway
variable that are similar to those for an OLS regression. In the 2SLS model, bike paths and lanes are
statistically significant predictors of cycling levels—even after accounting for endogeneity bias. Another
instrumental variable we examined—measuring city population per bicycling advocacy group member—
yielded similar results: statistical tests point to weak instrumentation, but bike paths and lanes retain their
significant and positive coefficient.
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explanatory variables might differ if the dependent variable had included bike trips for all

purposes.

Finally, the analysis was hampered by the unavailability or poor quality of data for

control variables. For example, we had to use a very rough proxy for cycling fatality rates

based on the available state data, and we could only measure exposure in terms of bike

commuting levels. Perhaps the most important control variable we could not include was

topography, since all studies show that it influences cycling levels. The model is under-

specified in this respect.

Many limitations of our study could be overcome with more and better data, which

would also facilitate more advanced modeling techniques and better measurement of

control variables. A crucial first step is a larger dataset reporting on cycling for all trip

purposes that could be disaggregated to the city level. However, that would require a large

new national survey or a vast increase in the sample size of the NHTS, currently the only

national travel survey in the USA reporting on travel for all trip purposes. Both of those

options seem unrealistic, however, given the difficulty in funding the latest 2009 NHTS

(AASHTO 2007). In addition, questions on the proximity to bike paths and lanes might be

added to future NHTS surveys, since the 2001 and 2009 NHTS surveys already included

questions about car ownership and access to public transport. More detailed information

about city-level supply of cycling facilities might be collected by a separate survey, similar

to the National Transit Database, which would provide an inventory of bike paths, lanes,

and parking. Better statistics on cycling facilities would enable more precision in the

analysis of their relationship to cycling levels. Moreover, better local data on cyclist

fatality rates in cities and a comparable GIS-based measure of urban topography would

also enhance the accuracy of the analysis of cycling levels.

Collecting comparable time-series data on cycling levels as well as bike path and lane

supply would facilitate pooled cross-section and time-series regression analysis, which

would permit stronger inferences from the models than in our cross-section analysis for

only one year. Larger sample size and time series data could also help mitigate some of the

endogeneity problems discussed above. For example, more advanced statistical techniques,

such as Structural Equation Modeling (SEM), can help control for the simultaneous

influence of independent and dependent variables, as well as for correlation among

independent variables.

Discussion and conclusion

Over the past two decades, many American cities have focused on building bike paths and

lanes to increase cycling (Alliance for Biking and Walking 2010; League of American

Bicyclists 2010; Pucher and Buehler 2011; Pucher et al. 2011b; USDOT 2010d). Our

analysis of newly collected data on cycling facilities in 90 large U.S. cities shows that

cities with a greater supply of bike paths and lanes have higher bike commute levels—even

after controlling for other factors that may affect cycling levels. That result is consistent

with other studies that confirm the important role of separate facilities (Dill and Gliebe

2008; Dill and Voros 2007; Krizek et al. 2007; Moudon et al. 2005; Nelson and Allen

1997). Most disaggregate, individual-level studies of the relationship between bikeway

supply and cycling levels focus on only one city or a few cities. Our study is most similar

to two earlier studies, which also used aggregate, city-level data to explore the relationship

of bikeways and cycling commute levels (Dill and Carr 2003; Nelson and Allen 1997). We

expand on those two studies in several ways.
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Our sample of 90 U.S. cities was much larger: more than four times as many cities as

Nelson and Allen (18 cities) and more than twice as many cities as Dill and Carr (42 cities).

Moreover, our regressions distinguish between paths and lanes, while the multiple

regressions in the other two studies either combined the two types of facility (Nelson and

Allen) or only included bike lanes (Dill and Carr). Similar to these two previous city-level

studies, we find that the supply of bikeways per capita is a statistically significant predictor

of bike commuting. By including separate variables for paths and lanes, however, our

analysis is able to examine each type of facility separately and finds that they do not have

significantly different associations with levels of bike commuting among cities.

Although the main focus of our study was on bike paths and lanes, the models yielded

new results about the influence of the control variables on cycling levels. The much larger

sample size and data availability for more variables allowed us to include nine control

variables in the regression equations, compared to five for Dill and Carr (2003) and four for

Nelson and Allen (1997). Our control variables include some of those suggested by Nelson

and Allen (1997), such as gasoline price and public transport supply. Similar to the other

two city-level studies, our results show that the percentage of college students in the city

population is a significant predictor of bike commuting. In contrast to these earlier studies,

however, we did not find a significant relationship between bike commuting and precip-

itation. Although the precipitation variable was estimated to be statistically significant in

the regression analysis of Dill and Carr (2003), the authors themselves doubted the actual

importance of precipitation as a predictor of cycling, since three of the top ten cycling

cities in their sample had very high levels of precipitation. In our own analysis of climate,

we included two additional climate control variables—the number of extremely hot and

cold days per year—but their estimated coefficients were not statistically significant, either.

Thus, none of our three measures of climate were strong predictors of bike commuting.

Similar to Dill and Carr (2003), our study shows that cities with higher car ownership

have lower cycling levels. Inclusion of additional control variables in our study revealed

that cities with safer cycling, less sprawl, and higher gasoline prices have more cycling.

Regional public transport supply per capita was not a statistically significant predictor of

bike commuting. Thus, we cannot confirm the speculations by Nelson and Allen (1997)

and Schwanen (2002) that public transport supply affects levels of bike commuting.

Most American cities build both bike lanes and bike paths with the expectation that

offering both kinds of facilities provides cyclists with more route options and choice of

facility type. Prior research finds that some cyclists prefer bike lanes, while others favor

bike paths. Some studies find that commuters prefer on-street bike lanes over paths because

lanes follow the road network and provide more direct routes (Aultman-Hall et al. 1998).

The multiple regression coefficients in our models, however, do not suggest a statistically

significant difference between paths and lanes in their relationship to bike commuting.

Furthermore, our coefficient estimates for paths and lanes suggest inelastic cycling demand

with respect to the supply of cycling facilities. A one percent difference between cities in

the supply of bike paths and lanes is associated with less than a one percent difference in

cycling levels.

Similar to all previous studies, our estimates of the role of bike paths and lanes do not

control for the many other differences among cities in their approaches to encourage

cycling. For example, most cities offer suggested bike routes on streets without any sep-

arate facilities and consider them an integral part of their overall cycling network. But

cities vary greatly in the quality of such routes and do not report statistics consistently, so

we did not include bike routes on roads without any dedicated space for cyclists. Similarly,

many other infrastructure measures and programs could not be integrated into the model.
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Intersection improvements and priority traffic signals for cyclists, bike parking, coordi-

nation with public transport, traffic education and training, and bike promotion and public

awareness campaigns all influence cycling levels to some extent, and should be controlled

for in models examining the determinants of cycling. The lack of reliable, comparable data

for these other measures prevents their inclusion in the regression models, which are thus

inevitably underspecified to some unknown extent. We share this drawback with all other

studies.

Whatever the shortcomings of our data and regression models, our estimated equations

are consistent with the hypothesis that bike lanes and paths encourage cycling. They reveal

a positive relationship even when controlling for a range of other factors expected to affect

cycling levels. Although not always statistically significant, the coefficients of explanatory

variables in our equations suggest a direction of influence similar to that found in most

other studies.
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