(1) Alliance for Biking \& Walking

BICYCLINE AND WALKING IN THE UNITED STATES 2012

 BENCHMARKING REPORT

 BENCHMARKING REPORT}

Biking \& Walking

BICYCLING AND WALKING IN THE UNITED STATES 2012

 BENCHMARKING REPORT

 BENCHMARKING REPORT}

Funding for this report was provided by the Centers for Disease Control and Prevention.

This project was also made possible with significant support from AARP and Planet Bike.

Copyright © 2012 by Alliance for Biking \& Walking
The Library of Congress, United States Copyright Office
All rights reserved. This report may be reproduced or transmitted with the written permission of the Alliance. Requests should be sent to Alliance for Biking \& Walking at the address below:
P.O. Box 65150

Washington, DC 20035
Phone: 202-449-9692
E-mail: info@PeoplePoweredMovement.org
Website: http:/ / www.PeoplePoweredMovement.org

Report Credits

Author/Project Manager:

Kristen Swanson, Alliance for Biking \& Walking

Research Assistant:

Andrea Milne, Alliance for Biking \& Walking

Research Consultants:

Ralph Buehler, PhD, Virginia Tech John Pucher, PhD, Rutgers University

Benchmarking Project Advisors:
Christopher Douwes,
Federal Highway Administration Darren Flusche,
League of American Bicyclists
Deb Hubsmith,
Safe Routes to School National Partnership Jeffrey Miller,
Alliance for Biking \& Walking Gabe Rousseau, PhD,
Federal Highway Administration $4{ }^{2}$ E Stephen Skowronski,
Centers for Disease Control and Prevention Arthur M. Wendel, MD, MPH ,
Centers for Disease Control and Prevention
Institute of Transportation Engineers (ITE) Review Committee:
Monica Altmaier, Fehr \& Peers Philip J. Caruso, PE, ITE Jennifer Donlon, Alta Planning James Mackay, City of Denver Jina Mahmoudi, ITE
Meghan Mitman, Fehr \& Peers
Matthew D. Ridgway, AICP, PTP, Fehr \& Peers Jeffrey R. Riegner, PE, AICP, Whitman, Requardt \& Associates, LLP
Edward R. Stollof, AICP, ITE
Shawn M. Turner, PE, Texas Transportation Institufe

Additional Contributors:

Brendon Haggerty, Clark County, WA Kit Hodge, San Francisco Bicycle Coalition Susan Peithman, Bicycle Transportation Allianc Zach Vanderkooy, Bikes Belong Foundation

Editing Assistance:

Maggie Warren
Photos courtesy of: Amanda Conde, Andrew Dannenburg, Andrew Schmidt, Arthur Wendall, Bicycle Transportation Alliance, Cascade Bicycle Club, Dan Burden-Walkable and Livable Communities Institute, Daniel Crouch, Daniel Lobo, Dave Delaney, David Flores, Dog company @ Flickir, Don DeBold, Ed Yourdon, Elizabeth Edwards, EPA, Eric Gilliland, Ernesto de Quesada, Frank Chan, Gabriella Salary, Greg Dunham, Greg Raisman, Jan Glas, Jim Swanson, John Lindenmayer, John Luton, jomilo75 @ Flickr, Kate McCarthy, La-Citta-Vita @ Flickr, Lasgalletas@ Flickr, Laurie Lebowsky, Lois Bielefeld, Louisville Metro Government, Mads boedker @ Flickr, Mark Stosberg, Metro Cincinnati Metro Bus, Mid-America Regional Council (Kansas City, MO), Minnesota Clean Energy Resource Teams, Missouri Bicycle and Pedestrian Federation, Natalie Baker, New York City DOT, NHTSA, North Carolina DOT, Paul Adkins, Paul Dineen, Payton Chung, Roland Tanglao, Safe Routes to School National Partnership, San Francisco Bicycle Coalition, Sarah Gilbert, Seattle DOT, Shane MacRhodes, Squiggle Stephenr @ Flickr, Stephen Lee Davis, Tanya Dueri, Teena Wildman, Thomas Le Ngo, Transportation for America, Tupwonders @ Flickr, UncleBucko @ Flickr, Washington State Senate Photography, Will Weaver, Woodleywonderworks @ Flickr, Yvonne Bambrick.

ACKNOWLEDGMENTS

This report is the result of hundreds working together.

Abstract

Thanks to the Centers for Disease Control and Prevention for funding the research elements of this project. Thanks to AARP and Planet Bike for funding promotion, dissemination, and other elements of this report. Thanks to Dr. John Pucher of Rutgers University and Dr. Ralph Buehler of Virginia Tech for their guidance, as well as for their contributions to the data analysis and editing of this report. And, to Jerry Jayjohn for quality control and Andrea Milne for her assistance with research, data collection, and illustrations.

Thanks to our review team, which includes representatives from the Federal Highway Administration, Institute of Transportation Engineers, Safe Routes to School National Partnership, and the League of American Bicyclists. Also, thanks to our advisors at the Centers for Disease Control and Prevention for providing their expertise and guidance throughout the report drafting.

Last and most importantly, thanks to the leaders of Alliance member organizations who supported this project. These leaders were the vital links to local officials and delivered the city and state surveys on time. This project would not have been possible without them, and it is in support of their vital work that this report has been produced.

Thanks to the following organizations and people for their help providing data for this report.

Activate Omaha, Tammie Dodge
Active Transportation Alliance, Ron Burke and Adolfo Hernandez
Alabama Bicycle Coalition, Marjorie Holderer
Alabama Department of Transportation, Mary Crenshaw
Alan M. Voorhees Transportation Center,
Leigh Ann Von Hagen
Alaska Department of Transportation, Bob Laurie
Arizona Department of Transportation, Brian Fellows and Michael Sanders
Atlanta Bicycle Coalition, Rebecca Serna
Austin Cycling Association, Stanton Truxillo
Bicycle Alliance of Minnesota, Dorian Grilley
Bicycle Alliance of Washington, Barbara Culp
Bicycle Coalition of Greater Philadelphia, John Boyle
Bicycle Coalition of Maine, Nancy Grant
Bicycle Colorado, Dan Grunig and Justin Millar
Bicycle Federation of Wisconsin, Jessica Binder, Kevin Hardman, Kevin Luecke, and Amanda White
Bicycle Indiana, Nancy Tibbett
Bicycle Transportation Alliance, Gerik Kransky, Margaux Mennesson, Susan Peithman, Rob Sadowsky, and Chelsea White
Bike Texas, Farideh Dassi and Robin Stallings
Bike Texas, Mark Stine
Bike Walk Mississippi, Melody Moody
Bike Walk Tennessee, Kyle Wagenschutz

[^0]City of Mesa, Jim Hash
City of Minneapolis, Shaun Murphy
City of New Orleans, Jennifer Ruley
City of Oakland, Jason Patton
City of Oklahoma City, Randy Entz
City of Phoenix, Joseph Perez
City of Raleigh Public Works Department,
Fleming El-Amin and Eric Lamb
City of Sacramento, Ed Cox
City of San Antonio, Julia Diana
City of San Diego, Shahriar Ammi and Samir Hajjiri
City of San Jose, John Brazil
City of Tucson Transportation Department, Tom Thivener
City of Tulsa Public Works Department, Brent Stout
City of Virginia Beach Parks and Recreation, Wayne Wilcox
Coalition of Arizona Bicyclists, Robert Jensen Consider Biking, Jeff Stephens
Delaware Department of Transportation, Anthony Aglio District Department of Transportation, Mike Goodno Federal Highway Administration, Donna Jones
Florida Bicycle Association, Laura Hallam
Florida Department of Transportation, Dennis Scott
Florida State Safety Office, Dwight Kingsbury
Georgia Office of Planning, Byron Rushing
Green Mobility Network, John Hopkins
Hawaii Bicycling League, Chad Taniguchi
Honolulu Dept. of Transportation Services, Chris Sayers
Idaho Transportation Department, Maureen Gresham Iowa Bicycle Coalition, Mark Wyatt
Iowa Department of Transportation, Craig O'Riley and Milly Ortiz
Kansas Department of Transportation, Becky Pepper
Kentucky Division of Planning, Lynn Soporowski
Kentucky Transportation Cabinet, Felicia Harper
Lake Tahoe Bicycle Coalition, Ty Polastri
League of American Bicyclists, Bill Nesper and Jeff Peel
League of Illinois Bicyclists, Ed Barsotti
League of Michigan Bicyclists, Rich Moeller
Little Rock Bicycle Friendly Committee, Bud Laumer
LivableStreets, Jacqueline Douglas
Los Angeles County Bicycle Coalition, Michelle Craven, Jennifer Klausner, and Alexis Lantz
Louisiana Department of Transportation and Development, Thomas Parsons
Louisville Metro Public Works, Rolf Eisinger and Dirk Gowin
Maryland Dept. of Transportation, Michael Jackson
Massachusetts Department of Transportation, Catherine Cagle and Josh Lehman
MassBike, David Watson
Memphis Urban Area Metropolitan Planning Organization, Paul Morris
Michigan Department of Transportation, Josh DeBruyn
Minnesota Department of Transportation,
Mary Elizabeth Jackson and Tim R. Mitchell

Missouri Bicycle \& Pedestrian Federation, Brent Hugh Mountain State Wheelers Bicycle Club, Dennis Strawn National Center for Safe Routes to School, Caroline Dickson and Nancy Pullen-Seufert
National Complete Streets Coalition, Stefanie Seskin
National Transportation Enhancements Clearinghouse, Tracy Hadden Loh
Nebraska Department of Roads, David Schoenmaker
Nevada Department of Transportation, Bill Story
New Hampshire Bureau of Rail and Transit, Larry Keniston
New Hampshire Dept. of Transportation, Jerry Moore
New York City Department of Transportation, Jennifer Harris-Hernandez and Hayes Lord
New York State Dept. of Transportation, Eric Ophardt
North Carolina Bicycle and Pedestrian Transportation, Helen Chaney
North Dakota Dept. of Transportation, Bennett Kubischta
Ohio Department of Transportation, Heather Bowden
Oklahoma Bicycling Coalition, Pete Kramer
Oklahoma Department of Transportation, Ginger McGovern and Lary Willis
Palmetto Cycling Coalition, Rachael Bronson
Pennsylvania Walks \& Bikes, Josh Karns
Philadelphia Mayor's Office of Transportation \& Utilities, Charles Carmalt
Regional Transportation Commission of South Nevada, Jerry Duke
Rhode Island Bicycle Coalition, Barry Schiller
Rhode Island Dept. of Transportation, Steve Church
Safe Routes to School National Partnership, Margo Pedroso
San Diego County Bicycle Coalition, Kathy Keehan
San Francisco Bicycle Coalition, Neal Patel and Kit Hodge
Seattle Department of Transportation, Doug Cox
South Carolina Dept. of Transportation, Tom Dodds
South Dakota Dept. of Transportation, Craig McIntyre
STN Media Group, Ryan Gray
St. Paul Smart Trips, Jessica Treat
Street Plans Collaborative, Mike Lydon
Tennessee Department of Transportation, Jessica Wilson
Teton Valley Trails and Pathways, Tim Adams
Transportation Alternatives, Aja Hazelhoff and Caroline Samponaro
Utah Department of Transportation, Evelyn Tuddenham
Vermont Agency of Transportation, Jon Kaplan
Virginia Bicycling Federation, Champe Burnley
Virginia Department of Transportation, Liz McAdory
Walk/Bike Nashville, David Kleinfelter and Thomas O'Connell
Washington Area Bicyclist Association, Shane Farthing
Washington Metropolitan Area Transit Authority, Kristin Haldeman
Wisconsin Department of Transportation, Tom Huber
Wyoming Department of Transportation, Talbot Hauffe

CONTENTS
 Acknowledgments
 1

Preface 6
Alliance for Biking \& Walking. 6
Benchmarking Project Origins6
Executive Summary 8
Objectives. 8
Data Collection 9
Key Trends 2005-2010. 9
Results. 10
Overview of Walking, Bicycling, Transit, and Car Mode Share. 10
Changes 2005-2010. 10
High to Low Ranking of Bicycling and Walking Levels.. 11
Low to High Ranking of Bike/Ped Fatality Rates. 12
High to Low Ranking of Per Capita Funding to Bike/Ped. 13
State Overview of Primary Benchmarking Indicators. 14
City Overview of Primary Benchmarking Indicators.. 15
Conclusions. 19
1:Introduction 20
Benchmarking Bicycling and Walking. 21
Objectives 22
Study Areas and Data Collection. 24
Study Area Populations. 24

Primary Benchmarks in this Report........... 26
Benchmarks in This Report......................... 27
Using This Report... 28
2: Levels of Bicycling and Walking 29
How Many People Bicycle and Walk?....... 29
State Ranking: Bicycling and Walking to
Work... 30
City Ranking: Bicycling and Walking to
Work.. 31
Workers' Commutes in U.S. by Mode of
Transport....................................... 31
Levels of Walking to Work in U.S.................... 32
Levels of Bicycling to Work in U.S.................. 32
Share of Commuters Who Bicycle or Walk
1990-2009.................................... 33
Share of Commuters Who Walk and Bicycle in 50 States.................................... 34
Share of Commuters Who Walk and Bicycle in Largest U.S. Cities.
.35
Looking Outside the Borders-Bicycling and
Walking Levels and Demographics............. 36
Who Bicycles and Walks?........................... 41
Pedestrian Commuters by Income Classification.41

Bicyclist and Pedestrian Mode Share
by Income Class. 41
A Look at Income. 42
A Look at Ethnicity. 43
A Look at Gender. 44
Bicycling to Work in States 45
Bicycling to Work in Cities.. 45
Walking to Work in States. 46
Walking to Work in Cities. 47
A Look at Age. 48
3: Safety 49
Overview of Walking and Pedestrian Safety Nationwide and in Largest U.S. Cities...... 50Overview of Bicycling and Bicycle SafetyNationwide and in Largest U.S. Cities...... 50
Victim Demographics 50
Safety Demographics 51
What's the Risk? 52
Safest Places to Bike Ranking. 52
Safest Places to Walk Ranking. 53
Bicyclist and Pedestrian Risk by State. 54
Fatality Trends 55
Pedestrian Safety in States. 56
Bicycle Safety in States 57
Bicycle Safety in Cities 59
Looking Outside the Borders-Pedestrian and Bicyclist Fatalities and Injuries 60
Pedestrian Safety in Cities. 62
State Safety Policies and Funding 63
Emerging Trends. 64
Safety Policy 64
4: Policies 65
Bicycling and Walking Policies. 67
Planning for Bicycling and Walking in States. 68
Planning for Bicycling and Walking in Cities. 69
Complete Streets Policies. 71
State Policies. 72
City Policies 73
State Safe Routes to School Policies. 76
Safe Routes to School in Cities. 77
State Bicycle Policies 79
State Legislation Relating to Bicycling. 80
Funding Bicycling and Walking. 82
Percent of Federal Transportation Dollars to Bicycling and Walking 82
Bicycle and Pedestrian Dollars by Funding Program 82
Percent of Transportation Dollars to Bike/ Ped. 83
Trends in Bicycle and Pedestrian Projects and Spending 1992-2010 84
Composition of Federal Funding for Bike/ Ped Provisions in Largest U.S. Cities 85
Bike/Ped Funding in States 86
Bike/Ped Funding in Cities. 87
Distribution of TE Funding by Category. 88
Distribution of TE Funding across Bicycle andPedestrian Projects........................ 88
Percent of Transportation Enhancement Funding to Bike/Ped by State.... 89
Transportation Enhancement Rescissions.. 90
Overall Transportation Versus TE Rescissionsby Fiscal Year91
Safe Routes to School Funding 92
Stimulus Bill Funding. 94
Looking Outside the Borders-Investing in Bicycling and Walking. 96
Existing Bicycle Facilities in Major U.S. Cities. 9Bike/Ped Infrastructure in Cities99
CLOSER LOOK: San Francisco's BurgeoningBicycle Network.100
Growth in Bicycle Facilities in Major U.S.
Cities 2009-201 1 102
Innovative Facilities in Cities. 104
Innovative Facilities Defined. 105
Inventory of Existing Bicycle Routes. 106
U.S. Bicycle Route System Corridor Plan. 107
U.S. Bicycle Route Policy. 108
Bike-Transit Integration 109
5: Education and Encouragement 110
2 of the " 5 Es" 110
Educating Professionals 110
Bike/Ped Professional Education in States... 111
Educating the Public. 112
Public Education and Events in States. 113
Bicycle Promotion in Cities 114
Adult Bicycle Education Courses 116
Adult Bicycle Education: Adults Per One Participant 117
Youth Bicycle Education Courses. 118
Youth Bicycle Education:Youth Per One Participant 119
Encouragement Programs and Events. 121
Bike to Work Day Events. 121
Schools Participating in Bike and Walk to School Day. 122
Number of Schools Participating in Walk and Bike to School Day 123
City-Sponsored Bicycle Rides. 125
Open Street/Ciclovia Initiatives 126
6: Grassroots Advocacy 127
Growing the Movement 127
Advocacy as an Indicator. 127
Alliance U.S. Bike/Ped Advocacy Organizations 128
Proving Effectiveness 128
Measuring Advocacy Capacity. 129
Breakdown of Every Dollar Earned by Statewide Alliance Organizations. 129
Breakdown of Every Dollar Earned by
Alliance Organizations Serving Cities... 129
Advocacy Capacity Ranking. 130
Per Capita Revenue of Statewide Alliance Organizations 131
Revenue Sources of Statewide Alliance Organizations 132
Revenue Sources of Alliance Organizations Serving Cities. 133
Number of Residents Per One Member in Statewide Alliance Organizations........ 135Number of Residents Per One Member inAlliance Organizations Serving Cities... 136
Capacity of Statewide AllianceOrganizations.138
CLOSER LOOK: Bicycle Transportation Alliance. 139
Capacity of Alliance Organizations Serving Cities. 140
CLOSER LOOK: Cascade Bicycle Club. 141
7: Influencing Bicycling and Walking 143
Environmental Influences 143
Comparing Average Summer and Winter Temperatures to Bicycling Levels...... 144
Residential Density and Bicycling andWalking Levels in Major U.S. Cities...... 145
Comparing Facility Miles to Bicycling Levels 146
Socioeconomics and Demographics. 147
Comparing Car Ownership to Bicycling and Walking Levels 148
Relationship between Bicycle Fatalities and Bicycling Levels 149
Relationship between Pedestrian Fatalities and Walking Levels. 150
Advocacy and Education 152
Relationship between Advocacy Capacity and Mode Share 153
CLOSER LOOK: Oregon's Rising Levels of Bicycling 154
Looking Outside the Borders-Car
Ownership and Bicycling and Walking Levelsin Developed Nations156
Looking to the Leaders 156
Looking Outside the Borders-The Bicycle Boom in Seville, Spain 157
8: Public Health Benefits 160
Bicycling, Walking, and Obesity. 160
Change in Bicycling and Walking Rates vs. Adult Obesity Rates. 161
Trend in Obese Children vs. Rate of Bicyclingand Walking to School.161
Obesity Levels. 162
Levels of Bicycling and Walking to Work. 162
Comparing Bicycling and Walking to Obesity Levels in 50 States 163
Public Health in 50 States 164
Public Health in U.S. Cities 165
Comparing Bicycling and Walking to Diabetes Rates in 50 States 166
Comparing Bicycling and Walking to Physical Activity Rates in 50 States. 167
CLOSER LOOK: Clark County, WA's Health Impact Assessment. 168
Looking Outside the Borders-Obesity Levels 170in Developed Nations
Comparing Bicycling and Walking to High Blood Pressure Rates in 50 States. 172
Other Health Indicators 173
9: Economic Benefits 174
Estimating Economic Impact 174
An Economic Boost 175
Job Creation from Bike/Ped Projects. 175
Overview of Bike/Ped Economic Impact Studies. 177
Lasting Impact 178
Economic Impact of Bike/Ped Events 180
CLOSER LOOK: North Carolina Attracts BicycleTourists 181
We Pay For In a Gallon of Regular Gasoline 182
Nonmotorized Transport is Generally Cheaper Than Alternatives 182
U.S. Oil Imports by Country of Origin 183
Bay Area Household Transportation Expenditures 183
Cost/Benefit 184
Percent of Household Expenses Related toTransportation Versus Levels ofBicycling and Walking to Work... 185Annual Household TransportationExpenses185
Obesity Costs and Potential Health Savings 186
How an Average Households Spends a Dollar. 187
How the Federal Government Spends a TaxDollar.187
CLOSER LOOK: Cost/Benefits of Bicycling Investment in Portland, OR 188
Looking Outside the Borders-Bicycling inGroningen: An Economic Program190
10: Conclusion 193
Appendix 1: Overview of Data Sources 199
Appendix 2: Organization and Study Area Matches 200
Appendix 3: Challenges with Trip Data 202
Appendix 4: Additional Data onBicycling and WalkingCommute Trends205
Bicycle to Work Levels by City 1990-2009 205
Bicycle to Work Levels by State 1990-2009 206
Walking to Work Levels by City 1990-2009 207
Walking to Work Levels by State 1990-2009 208
Appendix 5:Additional Resources. 209
Appendix 6: Overview of Other Benchmarking Efforts 218
Benchmarking Efforts Abroad 219
Benchmarking Efforts in the U.S 221
Links to Other Benchmarking Efforts 223
Benchmarking Together. 227
Appendix 7: Corrections to 2010 Benchmarking Report 228
Bibliography 231

PREFACE

Alliance for Biking \& Walking

Alliance for Biking \& Walking is the North American coalition of grassroots bicycling and walking advocacy organizations. Our mission is to create, strengthen, and unite state/provincial and local bicycle and pedestrian advocacy organizations. Since our founding in 1996, we have grown from 12 to nearly 200 member organizations representing 48 U.S. states, four Canadian provinces, and Mexico City.

In the last 16 years, we have improved the effectiveness of our organizations through trainings and the sharing of best practice models in organizational development and bicycling and walking initiatives. We are continually improving our delivery channels through executive coaching, replicable models, trainings, our on-call support system, strategic planning, and resources like

Alliance organizations inform and organize their communities to improve conditions for bicycling and walking, promoting these as healthy and enjoyable ways to travel. From advocating for bikeways and walkways to conducting safety courses, our coalition is changing attitudes and the environment in communities across North America. The Alliance connects these grassroots forces by fostering peer networking and supporting each other in our efforts to promote bicycling and walking for healthy communities, a healthy environment, and a better quality of life.

Benchmarking Project Origins

The Alliance's Benchmarking Project began in 2003 when Alliance leaders recognized the need for advocates to measure progress of bicycling and walking and realized the lack of available data. Our staff and board jumped

on the project, recognizing the benefit of showing the impact advocacy has on increasing bicycling and walking. Without hard data to measure results, Alliance organizations were missing a key argument for their efforts.

The Benchmarking Project was also aligned with public health organizations and objectives. The process of benchmarking is designed to facilitate communities to build healthy and safe community environments. This is one of four key directions outlined by the U.S. Department of Health and Human

> The process of benchmarking is designed to facilitate communities to build healthy and safe community environments.

Services as fundamental to bring prevention into our communities. Furthermore, it aligns with Centers for Disease Control and Prevention's (CDC) Winnable Battles to reduce motor vehicle injuries and increase physical activity. The partnerships addressed in this report among bicycle and pedestrian groups, health organizations, and transportation are necessary to address the infrastructure problems in our communities to improve public health, in the same way that municipal water systems and improved housing infrastructure helped
remove infectious disease risks in the previous century.

In 2004 the Alliance completed a pilot benchmarking report collecting data only on bicycling from just 15 cities and 15 states to test methods for the project. This first report helped pave a smoother path for the collection of more comprehensive data from all 50 states and 50 cities in 2006 and 2007. The first full report on the status of bicycling and walking in the United States was published in August 2007 (under the organization's former name: Thunderhead Alliance). The second full report was published in January 2010. This second report marked the first time we had in place a system to track usage and dissemination of report findings. To date, nearly 6,000 copies of the report have been downloaded or distributed. The 2010 report was cited or referenced in over 300 media stories, reports, plans, and articles.

This third full report builds upon our previous efforts to deliver timely data to help locals measure their progress and effectiveness, set new goals, and achieve greater results.

Through the ongoing Benchmarking Project, the Alliance for Biking \& Walking will publish an updated version of this report every two years and will continuously refine methods and consider new data sets as available. As the project progresses, it will offer more precise benchmarks and recommendations for advocates and government officials so that they have the data they need to improve bicycling and walking in the United States and eventually all of North America.

What isn't counted, doesn't count.

Government officials working to promote bicycling and walking need data to evaluate their efforts. In order to improve something, there must be a means to measure it. The Alliance for Biking \& Walking's Benchmarking Project is an ongoing effort to collect and analyze data on bicycling and walking in all 50 states and the 51 largest cities. This is the third biennial Benchmarking Report. The first report was published in 2007, the second in 2010, and the next report is scheduled for January 2014.

Objectives

(1) Promote Data Collection and Availability

 The Benchmarking Project aims to collect data from secondary sources (existing databases) and to conduct surveys of city and state officials to obtain data not collected by another national source. A number of government and national data sources are collected and illustrated in this report. Through state and city biennial surveys, this project makes new data available in a standardized format that otherwise does not exist.
(2) Measure Progress and

Evaluate Results

The Benchmarking Project aims to provide data to government officials and advocates in an accessible format that helps them measure their progress toward increasing bicycling and walking and evaluate the results of their efforts. Because the Benchmarking Project is ongoing, cities and states can measure their progress over time and will see the impacts of their efforts. By providing a consistent and objective tool for evaluation, organizations, states, and cities can determine what works and what doesn't. Successful models can be emulated and failed models reevaluated.

(3) Support Efforts to Increase

 Bicycling and Walking This project will ultimately support the efforts of government officials and bicycle and pedestrian advocacy organizations to increase bicycling and walking in their communities. By providing a means for cities and states> Levels of Bicycling and Walking, Bike/Ped Fatalities, and Bike/Ped Funding in the U.S.

to compare themselves to one another, this report will highlight successes, encourage communities making progress, and make communities aware of areas where more effort is needed. By highlighting the top states and cities, other states and cities will gain inspiration and best practice models. This report is intended to help states and communities set goals, plan strategies, and evaluate results.

Data Collection

This report focuses on 50 states and the 51 largest U.S. cities. Most bicycling and walking is in urban areas, and because of short trip distances, the most potential for increasing bicycling and walking is in cities. Whenever possible, the Alliance collected data for this report directly from uniform government data sources. Researchers collected data that were not readily accessible from national sources through two surveys for cities and states. In October 2010,

Bicyclists and pedestrians make up $\mathbf{1 2 \%}$ of all trips and account for 14% of traffic fatalities, yet just 1.6% of federal transportation funds go to these modes.

Overview of Walking, Bicycling, Transit, and Car Mode Share

Mode of Trave	\% of Commuters ()		\% of All Trips Nation-wide (2) wide
	Nationwide	Major U.S. Cities	
i\|	2.9\%	4.9\%	10.5\%
बరठ	0.6\%	0.9\%	1.0\%
\%	5.0\%	17.2\%	1.9\%
\%	91.5\%	77.0\%	86.6\%

Sources: (1) ACS 2009 (2) NHTS 2009 Notes: (3) This includes trips by private car and "other" means that are not public transportation, bicycling, or walking.
the Benchmarking Project team reached out to 50 states and 51 cities, utilizing the staff of cities, state departments of transportation, metropolitan planning organizations, and advocacy organizations to provide data for city and state surveys. The surveys complemented existing government data sources to create a comprehensive reserve of data that evaluates multiple factors that affect bicycling and walking in cities and states.

Results

Levels of Bicycling and Walking From 1990 to 2009, the percent of commuters who bicycle to work increased from 0.4% to 0.6% while the percent of commuters who walk to work decreased from 3.9% to 2.9%. According to the 2009 American Community Survey (ACS), 3.4% of commuters nationwide are bicyclists (0.55%) or pedestrians

Changes 2005-2010

	05/06	07/08	09/10
KEY FIGURES			
Percent of commuters who walk	2.5\%	2.8\%	2.9\%
Percent of commuters who bicycle	0.4\%	0.5\%	0.6\%
Percent of commuters who walk or bicycle	2.9\%	3.3\%	3.4\%
Percent of traffic fatalities: ped	11.2\%	11.3\%	11.7\%
Percent of traffic fatalities: bicycle	1.7\%	1.8\%	1.8\%
Number of ped traffic fatalities	4,892	4,699	4,092
Number of bicycle traffic fatalities	786	701	630
Percent of fed. trans. \$ to bike/ped	1.5\%	1.2\%	1.6\%
Number of states/cities responding(2)	46/45	47/48	48/48
STATE POLICIES (Number of states with)			
Goal to increase walking	16(1)	22	35
Goal to increase bicycling	16(1)	21	35
Goal to decrease ped fatalities	18(1)	31	41
Goal to decrease bicycle fatalities	18(1)	31	38
Bicycle advisory committee	*	20	24
Pedestrian advisory committee	*	18	22
Bicycle master plan	*	27	27
Pedestrian master plan	*	24	25
Safe passing legislation	*	14	21
Complete streets policy	10	17	24
CITY POLICIES (Number of cities with)			
Goal to increase walking	25(1)	20	36
Goal to increase bicycling	25(1)	33	46
Goal to decrease ped fatalities	20 (1)	19	31
Goal to decrease bicycle fatalities	20(1)	26	39
Bicycle advisory committee	*	33	36
Pedestrian advisory committee	*	31	26
Bicycle master plan	*	36	42
Pedestrian master plan	*	12	22
Complete streets policy	8	13	18
STATE PROVISIONS Per capita \$ to bike/ped	\$2.50	\$1.29	\$2.17
CITY PROVISIONS			
Per capita \$ to bike/ped	\$1.83	\$1.49	\$1.80
Miles bicycle facilities/sq. mile	1.3	1.4	1.8
Bike parking at transit/10K people	1.7	2.5	2.5
\% buses with bike racks	69\%	93\%	95\%
STATE EDUCATION \& ENCOURAGEMENT (Number of states with)			
Annual state bike/ped conference	*	15	25
Drivers test questions on bicycling	*	23	32
Share the road/safety campaign	*	33	38
CITY EDUCATION \& ENCOURAGEMENT (Number of cities with)			
Youth bike ed courses	*	29	38
Adult bike ed courses	*	33	41
Bike to Work Day events	*	37	43
Open street (ciclovia) initiatives	*	12	21
City-sponsored bike ride	*	23	32
OTHER			
States with dedicated advocacy org	32	35	43
Cities with dedicated advocacy org	32	34	36

(1) Walking and bicycling were combined in this survey (2) Number of states/cities who responded to the Benchmarking Report survey
*= Data unavailable

High to Low Ranking of Bicycling and Walking Levels

STATES	CITIES
1. Alaska	1. Boston
2. Vermont	2. Washington, DC
3. New York	3. San Francisco
4. Montana	4. Seattle
5. Oregon	5. New York
6. Hawaii	6. Portland, OR
7. Massachusetts	7. Minneapolis
8. South Dakota	8. Philadelphia
9. Wyoming	9. Honolulu
10. Maine	10. New Orleans
11. North Dakota 12. Pennsylvania	11. Baltimore 12. Chicago
13. Idaho	13. Oakland
14. Iowa	14. Denver
15. Washington 16. Colorado	15. Sacramento 16. Tucson
16. Colorado	16. Tucson
18. Minnesota	18. Atlanta
19. California	19. Cleveland
20. 11 llinois	20. Los Angeles
21. Nebraska	21. Miami
22. Utah	22. Long Beach
23. New Jersey	23. San Diego
24. New Hampshire	24. Detroit
25. Rhode Island	25. Columbus
26. Connecticut	26. Albuquerque
27. Kansas	27. Austin
28. New Mexico	28. Raleigh
29. Arizona 30. West Virginia	29. Colorado Springs 30. Mesa
31. Nevada	31. Omaha
32. Maryland	32. San Jose
33. Delaware	33. Louisville
34. Michigan	34. Fresno
35. Indiana	35. Virginia Beach
36. Virginia	36. Tulsa
37. Kentucky	37. Houston
38. Ohio	38. Phoenix
39. Louisiana	39. Indianapolis
40. Missouri	40. Las Vegas
41. Oklahoma	41. Kansas City, MO
42. Florida	42. El Paso
43. North Carolina	43. Memphis
44. South Carolina	44. Charlotte
45. Texas	45. San Antonio
46. Mississippi	46. Arlington, TX
47. Arkansas	47. Nashville
48. Georgia 49. Tennessee	48. Jacksonville
49. Tennessee 50. Alabama	49. Dallas
50. Alabama	50. Oklahoma City 51. Fort Worth

(2.86\%). Residents of major U.S. cities are 1.7 times more likely to walk or bicycle to work than the national average. According to the 2009 National Household Travel Survey (NHTS) 1.0\% of all trips are by bicycle and 10.5% of all trips are by foot nationwide. It is difficult to determine bicycling and walking mode share for all trips at the state and city levels because of small sample sizes of NHTS.

Bicycle and pedestrian commuters are generally distributed proportionately among ethnic groups in the U.S., according to the 2009 ACS. Greater disparities are found among genders. According to the 2009 NHTS, 49% of walking trips are men and 51% are female, yet among bicycle trips, 76% are male and only 24% are female. A look at age reveals that while walking is generally distributed proportionately among age groups, youth under age 16 make up 39% of bicycle trips. This age group accounts for just 21% of the population.

Safety

In 2009, 4,092 pedestrians and 630 bicyclists were killed in traffic. This is down significantly from 2005 when 4,892 pedestrians and 786 bicyclists were traffic fatality victims. While overall numbers of bicycle and pedestrian fatalities are declining, pedestrians and bicyclists are still at a disproportionate risk for being a victim of a traffic fatality. Although just 10.5% of trips in the U.S. are by foot and 1.0% are by bicycle, 11.7% of traffic fatalities are pedestrians and 1.8% are bicyclists. In major U.S. cities, 12.7% of trips are by foot and 1.1% are by bicycle,

[^1]yet 26.9% of traffic fatalities are pedestrians and 3.1% are bicyclists.

According to the 2007-2009 Fatality Analysis Reporting System (FARS) and the 2009 NHTS, seniors are the most vulnerable age group. While adults over 65 make up 10% of walking trips and 6% of bicycling trips, they account for 19% of pedestrian fatalities and 10% of bicyclist fatalities.

Policies and Provisions

A number of policies and provisions are represented in this report including funding and staffing levels, infrastructure, written policies, and bike-transit integration. This report marks a significant increase in planning for bicycling and walking over the last two years. Many states and cities have adopted new plans and goals to increase bicycling and walking and reduce fatalities. Overall, states and cities still rank poorly for funding bicycling and walking at a rate proportionate to active transportation levels.

Funding for Bicycling and Walking

2010 data from the Federal Highway Administration reveal that states spend just 1.6% of their federal transportation dollars on bicycling and walking. This amounts to just $\$ 2.17$ per capita for bicycling and walking. About 40% of these dedicated bicycle and pedestrian dollars are from the Transportation Enhancement (TE) program. The majority of TE funding (48%) goes toward building bicycle and pedestrian facilities and to bicycle and pedestrian education.

Sources: FARS 2007-2009 ACS 2007-2009 Notes: This ranking is based on the fatality rate which is calculated by dividing the number of annual pedestrian and bicycle fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population walking and bicycling to work). The number one position indicates the safest state or city according to the fatality rate. View these data on pages $56-62$ of this report.

Low to High Ranking of Bike/Ped Fatality Rates

STATES

1. Vermont
2. Nebraska
3. Alaska
4. Wyoming
5. South Dakota
6. North Dakota
7. Iowa
8. Maine
9. Massachusetts
10. Minnesota
11. Idaho
12. New Hampshire
13. Oregon
14. Washington
15. Wisconsin
16. Montana
17. New York
18. Pennsylvania
19. Kansas
20. Colorado
21. Hawaii
22. Utah
23. Illinois
24. Connecticut
25. West Virginia
26. Ohio
27. Indiana
28. Rhode Island
29. Virginia
30. Kentucky
31. New Jersey
32. California
33. Michigan
34. Missouri
35. Oklahoma
36. Nevada
37. Tennessee
38. New Mexico
39. Maryland
40. Arizona
41. Arkansas
42. Delaware
43. Texas
44. North Carolina
45. Georgia
46. Mississippi
47. Alabama
48. Louisiana
49. South Carolina
50. Florida

CITIES

1. Boston
2. Minneapolis
3. Omaha
4. Seattle
5. Portland, OR
6. Washington, DC
7. New York
8. San Francisco
9. Philadelphia
10. Honolulu
11. Colorado Springs
12. Chicago
13. Cleveland
14. Oakland
15. Baltimore
16. Milwaukee
17. Sacramento
18. Denver
19. Virginia Beach
20. Tucson
21. Mesa
22. San Diego
23. New Orleans
24. San Jose
25. Columbus
26. Los Angeles
27. Atlanta
28. Indianapolis
29. Long Beach
30. Austin
31. Arlington, TX
32. Raleigh
33. Albuquerque
34. Las Vegas
35. El Paso
36. Memphis
37. Fresno
38. San Antonio
39. Nashville
40. Detroit
41. Houston
42. Charlotte
43. Louisville
44. Miami
45. Kansas City, MO
46. Oklahoma City
47. Tulsa
48. Phoenix
49. Dallas
50. Jacksonville
51. Fort Worth

High to Low Ranking of Per Capita Funding to Bike/Ped

STATES

1.Alaska
2. Vermont
3. Montana
4. Wyoming
5. Delaware
6. New Mexico
7. South Dakota
8. Rhode Island
9. Kentucky
10. Iowa
11. Minnesota
12. North Dakota
13. Indiana
14. Washington
15. Pennsylvania
16. New Hampshire
17. Missouri
18. Tennessee
19. Idaho
20. Maine
21. Florida
22. Arizona
23. Georgia
24. Oregon
25. Massachusetts
26. Alabama
27. North Carolina
28. Louisiana
29. Kansas
30. Colorado
31. Utah
32. Hawaii
33. Michigan
34. California
35. Connecticut
36. Nebraska
37. New York
38. Mississippi
39. West Virginia
40. Texas
41. Ohio
42. Wisconsin
43. Arkansas
44. Nevada
45. Illinois
46. South Carolina
47. New Jersey
48. Oklahoma
49. Virginia
50. Maryland

CITIES

1. Washington, DC
2. Minneapolis
3. Sacramento
4. Miami
5. Tucson
6. Dallas
7. New Orleans
8. Albuquerque
9. Nashville
10. Oakland
11. Atlanta
12. Kansas City, MO
13. Portland, OR
14. OmahaS
15. San Diego
16. Philadelphia
17. Raleigh
18. San Francisco
19. Indianapolis
20. Houston
21. San Jose
22. San Antonio
23. Charlotte
24. Denver
25. Austin
26. Milwaukee
27. Jacksonville
28. Memphis
29. Long Beach
30. Phoenix
31. Fresno
32. El Paso
33. Seattle
34. Detroit
35. Colorado Springs
36. Louisville
37. Columbus
38. Cleveland
39. Tulsa
40. Honolulu
41. Los Angeles
42. Boston
43. Fort Worth
44. Mesa
45. Baltimore
46. Chicago
47. Virginia Beach
48. Arlington, TX
49. Las Vegas
50. New York

Planning and Legislation

Since the 2010 Benchmarking Report, there has been a 63% increase in the number of states that have published goals to increase bicycling and walking, and a 27% increase in the number of states that have published goals to reduce bicycle and pedestrian fatalities.

2011 League of American Bicyclist data on state legislation reveal that most states have basic bicyclists' rights legislation such as allowing bicyclists to legally ride two-abreast, signal right turns with their right hand, and to take a full traffic lane in the presence of a sidepath or bike lane. Twenty-one states have 3 -foot passing laws that require motorists to pass bicyclists at a safe distance of at least three feet (up from 14 as of the 2010 Benchmarking Report).

A survey of other policies found that 19 (of the 51 largest) U.S. cities and 26 states have adopted complete streets policies that require streets be built to accommodate all potential road users. Nearly half of states report having a bicycle and pedestrian advisory committee. And 38 states report having a publicly available bicycle map.

Cities were surveyed on a number of planning and policy initiatives. Fortyone cities report having a bicycle master plan, and 21 have a pedestrian master plan. Over half of cities have bicycle and pedestrian advisory committees. (Continued page 16)

[^2]
State Overview of Primary Benchmarking Indicators

Key: $=$ Top $1 / 3$ among states $D=$ Middle $1 / 3$ among states $\bigcirc=$ Bottom $1 / 3$ among states * $=$ data unavailable

14

Interpreting the State and City Overview Tables

The tables on this page and next give an overview of how states and cities compare in six areas. Full circles indicate the best ranking; states and cities with full circles are within the top $1 / 3$ among their peers. Half-circles represent the middle $1 / 3$, and empty circles represent the bottom 1/3. States and cities with the most filled in circles represent those that are setting the benchmarks for bicycling and walking levels, safety, funding, policies, education/ encouragement, and advocacy capacity. Below is an explanation for how the rankings on this page and next were determined.

Mode Share: This ranking is based on the combined share of commuters who bicycle and walk to work averaged over the most recent three years. The top 1/3 states and cities are those with the highest percentage of workers who commute by bicycle and foot. Data source: ACS 20072009.

Safety: This ranking is based on the bicycle and pedestrian fatality rate defined as number of annual bicycle and pedestrian deaths (using a 3 -year average) divided by the population (weighted, or multiplied, by share of commuters who bicycle and walk to work). The top $1 / 3$ states and cities are those with the lowest fatality rate, and thus the highest safety ranking. Data Sources: FARS 2007-2009, ACS 2009.

Funding: This ranking is based on the federal dollars per capita that are obligated to bicycling and walking annually. The top 1/3 states and cities are those with the highest per capita investment of federal dollars in bicycling and walking. Data Source: FHWA 2004-2008

Policies: This ranking is based on the total number of policies promoting bicycling and walking adopted by the state/city Policies counted for states include: Goals to increase walking, increase bicycling, decrease pedestrian fatalities, and decrease bicycle fatalities; Master Plan adopted for bicycling, walking, and trails; Bike/ Ped advisory committee; legal 2-abreast riding for bicycles; 3-foot/safe passing legislation; spending target; publicly available bicycle map; complete streets policy. Policies counted for cities include: goals to increase walking, increase bicycling, decrease pedestrian fatalities, and decrease bicycle fatalities; Master Plan adopted for bicycling and for walking; Bike/ Ped advisory committee; bicycle parking requirements in building/ garages, new buildings, and at public events; complete streets policy. Data Sources: State surveys, city surveys, League of American Bicyclists (1)

Education/Encouragement: This ranking is based on the total number of education/ encouragement programs and state/city events. Those counted for states include:

City Overview of Primary Benchmarking Indicators

Key: =Top $1 / 3$ among cities \square $=$ Middle $1 / 3$ among cities \bigcirc
= Bottom 1/3 among cities * = data unavailable
Share the road/public safety campaign; info on bicycling in driver's manual; driver's test questions on bicycling; state-sponsored ride to promote bicycling/activity; bicycling enforcement as a policy academy requirement; bicycling enforcement in police continuing education; and existence of an annual statewide bike/ped conference. Those counted for cities include: Adult and youth bicycle education courses; Bike to Work Day events; open streets initiative; city-sponsored ride to promote bicycling/ activity; public bike share program. Data Source: State and city surveys

Advocacy Capacity: This ranking is based on the 2010 per capita revenue of Alliance bicycling and walking advocacy organizatrons serving cities/states. Only statewide organizations are included for states and only organizations with a focus on serving a study area city are included for cities. Citlies and states without dedicated Alliance advocacy organizations are marked by an empty circle. Data Source: Organization surveys (2)

Notes: (1) Because many states and cities have the same number of policies, policy rankings are not divided into even thirds. For states, those with more than 10 of the 14 policies considered are indicated with full circles; those with $8-10$ policies are indicated with a half circle, and those with fewer than 8 policies are indicated with an empty circle. For cities, those with 10 or more of the 13 policies considered are indicated with full circles; those with 6-9 policies are indicated with a half circle, and those with 5 or fewer policies are indicated with an empty circle. (2) Because many states and cities have the same number of education and encouragement initiatives, these rankings are not divided into even thirds. For states, those with 6-7 of the 7 initiatives considered are indicated with full circles; those with 4-5 initiatives are indicated with a half circle, and those with 3 or fewer initiatives are indicated with an empty circle. For cities, those with 5-6 of the 6 initiatives considered are indicated with full circles; those with 3-4 initiatives are indicated with a half circle, and those with 2 or fewer initiatives are indicated with an empty circle. (3) These rankings are based on surveys of Alliance bicycling and walking advocacy organizations only. Because some cities and states are not served by dedicated Alliance advocacy organizations, for states, the 16 served by advocacy organizations with the greatest capacity are marked with a full circle, the 15 remaining states served by advocacy organizations are marked with half circles, and the remaining states not served by statewide Alliance advocacy organizations are indicated with empty circles. For cities the 15 served by advocacy organizations with the greatest capacity are marked with a full circle, the 14 remaining cities served by advocacy organizations are marked with half circles, and the remaining cities not served by dedicated Alliance advocacy organizations are indicated with empty circles.

Infrastructure

City surveys examined current and planned bicycle and pedestrian infrastructure in order to benchmark the progress communities are making. Specifically, cities reported miles of bike lanes, bicycle routes, and multi-use paths. On average, cities have 1.8 miles of bicycle facilities (bike lanes, multiuse paths, and signed bicycle routes) per square mile-a 29% increase since the 2010 Benchmarking Report.

While implementation of innovative facilities such as bicycle boulevards and colored bike lanes is low, surveys indicated that there are new projects currently being implemented or in the process of approval. The number of cities that report having implemented innovative facilities has increased significantly in the last two years. Seventythree percent of cities now report having implemented sharrows, or shared lane markings.

Bike-Transit Integration

Bike-transit integration has proved to be a vital aspect of effective bicycle systems. The report analyzes responses from city and state surveys, as well as American Public Transportation Association (APTA) data, to see how well cities are integrating bicycle systems with transit. Forty-four cities report that 100% of their bus fleet have bicycle racks, a 19% increase over the past two years. Major U.S. cities report an average of 2.5 bicycle parking spaces at bus stops for every 10,000 residents.

Education and Encouragement

Education and encouragement programs at the state and city level are effective ways to inform the public and promote bicycling and walking. Infor-
mation from state and city surveys and the National Center for Safe Routes to School illustrates the growth in bicycle and pedestrian education in communities. National Walk and Bike to School Day is a popular encouragement activity with growing school participation nationwide.

Thirty-eight cities report having youth bicycle education courses and 41 have adult courses. Youth education is a vital area of outreach because it has the potential to influence the habits of the next generation. The number of youth who participate in bicycle education courses in cities increased by 31% from two years ago. Surveys indicate a 40% increase in adult participation levels for bicycle educational courses over the last two years.

League of American Bicyclists' data indicate that almost all states (49) have information on bicycling in their state driver's manual, yet just 32 states have questions on bicycling on their state driver's exam. The majority of states (38) have a "Share the Road" or similar public safety campaign. Seventeen states report sponsoring a statewide ride to promote bicycling or physical activity.

The Alliance also collected data on professional education regarding bicycling and walking. Overall, these efforts are growing among states, but there is still great room for improvement. Only 20 states have bicycle enforcement as a police academy requirement. And, just 25 states report having hosted a statewide bicycle and pedestrian conference.

Cities were also surveyed on encouragement activities including presence of and participation levels in Bike to Work

Day events, open street/ ciclovia initiatives, and city-sponsored bicycle rides. Bike to Work Day is the most common encouragement event with 43 cities participating with an average of one participant for every 286 adults. Thirtytwo cities sponsor rides to promote bicycling or physical activity with an average of one participant for every 350 residents. Twenty-one cities have open street (car-free or ciclovia) initiatives with an average of one participant for every 37 residents.

Cycling and Walking Advocacy

 Advocacy organizations have the potential to influence bicycling and walking in the communities they serveby advocating for and winning new policies, funding, infrastructure, and programs. The number of Alliance state and local bicycle and pedestrian advocacy organizations has been increasing steadily since the Alliance was founded in 1996. This report measures organization capacity of Alliance member organizations and sets standards for membership, revenue, staffing, and media exposure. Results from Alliance organization surveys vary widely because of the great variation in maturity and operations of these organizations as well as the communities they serve. Some organizations in this report are decades old while others were founded not long before these surveys were collected.

Surveys indicate that organizations serving cities earn significantly more per capita than their statewide counterparts. Local organizations earn an average of $\$ 0.15$ per resident served while statewide organizations earn just $\$ 0.03$ per resident. In general, organization revenue is diversified, coming from membership and donations, events, fees, grants, contracts, and the bicycle industry. Local Alliance organizations also have much higher per capita membership levels averaging one member per 1,522 residents. Statewide organizations have an average of one member per 4,975 residents. Similarly, statewide organizations operate with an average of 0.4 full-time-equivalent staff (FTE) per million residents served. Organizations serving cities average 2.2 FTE staff per million residents.

Factors Influencing Bicycling and Walking

Analysis in this report shows several positive relationships between bicycling and walking rates and safety, advocacy capacity, density, and car ownership. While weather does not appear to be a factor that directly influences bicycling levels, density, advocacy capacity, and car ownership are a few factors that appear to influence bicycling and walking trips.

ACS and FARS data indicate a positive correlation between bicycling and walking levels and safety. In line with previous studies, an increase in walking and bicycling levels is strongly related to increased bicyclist and pedestrian safety.

Public Health Benefits

To see how bicycling and walking influence public health, the Alliance
compared public health data to bicycling and walking levels. Data from the Behavioral Risk Factor Surveillance System (BRFSS) and ACS reflect a direct relationship between levels of bicycling and walking and several public health indicators. Data suggest that the risk for such health problems as obesity, diabetes, asthma, and hypertension will decrease with more bicycling and walking. States with lower bicycling and walking levels on average have higher levels of obesity, diabetes, hypertension, and asthma. States with higher levels of bicycling and walking also have a greater percentage of adults who meet the recommended 30 -plus minutes of daily physical activity. This suggests that increasing bicycling and walking can help achieve public health goals of increasing physical activity and lowering rates of overweight and obesity.

Economic Benefits

To see how bicycling and walking influence the economic strength of communities, the Alliance surveyed numerous studies and data sources. Evidence suggests that bicycling and walking projects create 11-14 jobs per $\$ 1$ million spent, compared to just 7 jobs created per $\$ 1$ million spent with highway projects. Surveys show that facilities for bicycling and walking attract tourists, event participants, and business. In addition bicycling and walking are affordable investments that save commuters money and in turn equate to more money available for local economies.

Studies that have performed cost/benefit analysis on bicycling and walking facilities have found that these facilities have significant benefit for public health, traffic congestion, and air quality. The cost benefit ratio of Portland, OR's bicycle investments, looking at just
health and fuel savings, ranged from 3.8-to-1 to 1.3-to-1.

Conclusions

While many state and local communities are making sufficient efforts to promote bicycling and walking, much more work needs to be done. Barriers in staffing and funding remain a consistent limitation to promoting bicycling and walking. Bicycling and walking make up 11.5% of all trips, and 13.5% of traffic fatalities, and yet receive just 1.6% of federal transportation dollars.

The proven environmental, economic, and personal health benefits that bicycling and walking offer are evidence that increasing bicycling and walking levels are in the public good, yet a much greater investment is needed throughout the U.S. This Benchmarking

Report identifies which cities and states are leading the way and provides links to resources (Appendix 5) from these communities.

The Alliance recommends that government officials and advocates take the time to evaluate their efforts to promote bicycling and walking. This report can be used by communities to see how they measure up, to identify role models, and to set new goals. Continued benchmarking and improvements in the availability of data will strengthen the report in the coming years, and lend a better understanding of the factors that influence bicycling and walking. Ultimately, by providing a tool for communities to consistently measure progress, evaluate results, and set new targets, this report will advance efforts for a more bicycle- and pedestrian-friendly America.

Bicycling and walking are good for public health, good for the environment, good for local economies, and help create vibrant communities. This report shows that bicycling and walking are prudent investments that deliver greater returns, and create more jobs, than investing in motorized transportation. Bicycling and walking are also critical components of a healthy active lifestyle that promises to improve health, help protect against various diseases, reduce stress, and improve overall quality of life. For these reasons, government officials, elected representatives, and the media are taking an increased interest in active transportation.

Since publishing the first biennial Benchmarking Report in 2007, there
have been many significant new efforts, programs, organizations, and policies promoting bicycling and walking in the United States. Since 2007, the Alliance's network has grown from 133 to nearly 200 grassroots bicycling and walking advocacy organizations.

In August 2008, the first public smart bike sharing program in the U.S. was launched in Washington, DC, and subsequent programs have sprung up in Boston, Chicago, Denver, Minneapolis, Nashville, San Antonio, and other cities.

In December 2009 the National Association of City Transportation Officials (NACTO) founded the Cities for Cycling project to document, promote, and implement the world's best bicycle transportation practices in U.S. cities.

The League of American Bicyclists has expanded its Bicycle Friendly Communities Program to make states, businesses, and universities eligible for "bicycle friendly" designation. In April 2011, the Pedestrian and Bicyclist Information Center awarded the inaugural Walk Friendly Community designations to 11 communities.

These efforts are receiving increasing support from people in the public eye. In February 2010, First Lady Michelle Obama launched her Let's Move campaign to reduce childhood obesity within one generation. Helping kids become more physically active is one of the program's main goals. In March 2010, U.S. Secretary of Transportation Ray LaHood came out as a champion of bicycling and walking and introduced a new policy that recommended "increased commitment to and investment in bicycle facilities and walking networks." In 2011, a survey of U.S. mayors revealed that they want more control of federal transportation money and 60% of mayors see bicycle and pedestrian projects as a major priority (Flusche 2011).

Public demand for bikeable and walkable places is also growing. A 2010 survey of 1,025 adults age 18 and older found that nearly half of drivers ages $18-34$ are driving less. Nearly two-thirds reported they would drive less if transportation alternatives were more readily available. The cost of owning a car and concern for the environment were among the reasons younger drivers are leaving their cars parked (UPI 2010). A 2011 survey by the National Association of Realtors found that Americans favor walkable mixed-use neighborhoods with 56% of respondents selecting these neighborhoods over ones that require more driving between home, work, and
other destinations (National Association of Realtors 2011).

Momentum is growing for bicycle and walking friendly communities. This report gives a good picture of how the landscape is changing for bicycling and walking. It shows which states and cities are making strides and which are setting the benchmarks. Most importantly, it serves as a tool for officials, advocates, researchers, and the media to track and support continued efforts to increase investment in bicycling, walking, safety, and public health.

Benchmarking Bicycling and Walking

Benchmarking is the method of determining best practices or standards and who sets them. Government officials and bicycle and pedestrian advocates have all wondered at some point how their city or state compares with others. Officials and advocates need data to measure their progress and evaluate their efforts. The Alliance for Biking \& Walking's Benchmarking Project collects data from government and national data sources, and through surveys to government officials and advocates. Results are published in this biennial Benchmarking Report to measure progress over time of the most-populous cities and states in regard to bicycling and walking.

Benchmarking helps to show officials and advocates where their city or state measures up and helps them to identify areas most in need of improvement. The ultimate objectives of the Benchmarking Project are to increase the number of people who bicycle and walk and to improve their safety. Through benchmarking, new goals can be set, programs evaluated, and continued progress made toward a bicycle and pedestrian friendly America.

Objectives

Promote Data Collection and Availability

Historically there has been little data available on bicycling and walking that can be compared across states and cit-

ies. Data that have existed are often not easily accessible to officials and advocates. One of the main objectives of the Alliance's Benchmarking Project is to promote data collection and availability. This project collects data from a number of government and national data sources and presents it in a way that is easily accessible to those who need it. Through biennial surveys of states, cities, and advocacy organizations, the Benchmarking Project makes new data available such as miles of infrastructure, staffing levels, and advocacy capacity. These data are not available from any other source, but are crucial to understanding mode share and safety outcomes.

Measure Progress and Evaluate Results

Benchmarking is a necessary step to give communities a true picture of how they compare to other communities, what areas they are excelling in, and where they are falling behind. Most importantly, these data enable advocates and officials to evaluate the results of their efforts. Because the Benchmarking Project is ongoing, states and cities can measure their progress over time and will see the impacts of their efforts. By providing a consistent and objective tool for evaluation, this report allows states and cities to determine what works and what doesn't. Successful models can be emulated and failed models discarded.

Support Efforts to Increase Bicycling and Walking

The ultimate objectives of the Alliance's Benchmarking Project are to support the efforts of officials and advocates to increase bicycling and walking in their communities and improve bicycle and pedestrian safety across the U.S. By comparing bicycling and walking statistics across states and cities, this report highlights and praises efforts of communities who provide models, encourages those making progress, and makes states and cities aware of areas where they need work. The Alliance hopes that this report will be used by communities to set goals for increasing bicycling and walking, plan strategies using best practice models, and evaluate results over time. The Alliance strives to make this project a service and tool for officials and advocates so that they can chart the best course toward more bikeable and walkable communities.

Make the Health Connection

The Centers for Disease Control and Prevention (CDC) has declared obesity an epidemic, and people are now looking more closely at the lifestyle choices that may be to blame. Among the top are unhealthy diet and sedentary lifestyles. Studies demonstrate a link between the built environment and levels of physical activity (Frank et al., 2004; Goldberg 2007; Salems and Handy 2008; TRB 2005). The way communities are designed is inextricably linked to the amount of physical activity their residents average. Where environments are built with bicyclists and pedestrians in mind, more people bicycle and walk. These environments increase opportunities for physical activity and promote healthy lifestyles.

Nearly 40% of all trips are two miles or less and 27% are one mile or less (NHTS). These are trips considered an easily bikeable or walkable distance. Now that people are looking for answers to reversing the obesity epidemic, increasing bicycling and walking is an obvious solution.

> Alliance for Biking \& Walking has partnered with the CDC for this project in an effort to highlight the connection between healthy lifestyles and bicycling and walking. This report includes data on physical activity, obesity and overweight trends, high blood pressure rates, and diabetes, to illustrate the connection between bicycling and walking levels and these health indicators. Along with illustrating the correlation between bicycling and walking and health, the Alliance hopes to show, over time, that as bicycling and walking levels increase, the obesity epidemic begins to reverse.

Study Area Populations

Rank	State	Population
1	California	$36,961,664$
2	Texas	$24,782,302$
3	New York	$1,54,453$
4	Florida	$18,537,969$
5	Illinois	$12,910,409$
6	Pennsylvania	$12,604,767$
7	Ohio	$11,542,645$
8	Michigan	$9,969,727$
9	Georgia	$9,829,211$
10	North Carolina	$9,380,884$
11	New Jersey	$8,707,740$
12	Virginia	$7,882,590$
13	Washington	$6,664,195$
14	Arizona	$6,595,778$
15	Massachusetts	$6,593,587$
16	Indiana	$6,423,113$
17	Tennessee	$6,296,254$
18	Missouri	$5,987,580$
19	Maryland	$5,699,478$
20	Wisconsin	$5,654,774$
21	Minnesota	$5,266,215$
22	Colorado	$5,024,748$
23	Alabama	$4,708,708$
24	South Carolina	$4,561,242$
25	Louisiana	$4,492,076$
26	Kentucky	$4,314,113$
27	Oregon	$3,825,657$
28	Oklahoma	$3,687,050$
29	Connecticut	$3,518,288$
30	lowa	$3,007,857$
31	Mississippi	$2,951,996$
32	Arkansas	$2,889,450$
33	Kansas	$2,818,747$
34	Utah	$2,784,572$
35	Nevada	$2,643,085$
36	New Mexico	$2,009,671$
37	West Virginia	$1,819,777$
38	Nebraska	$1,796,622$
39	Idaho	$1,545,801$
40	New Hampshire	$1,324,575$
41	Maine	$1,318,301$
42	Hawaii	$1,295,178$
43	Rhode Island	$1,053,209$
44	Montana	974,989
45	Delaware	885,122
46	South Dakota	812,383
47	Alaska	698,473
48	North Dakota	646,844
49	Vermont	621,760
50	Wyoming	544,270

Source: 2009 ACS Note: * New Orleans is not currently the 51 st largest U.S. city but was included in this report for consistency and continuity with the 2007 and 2010 Benchmarking Reports.

Data and illustrations in this report are intended to be used by officials and advocates to argue for bicycling and walking as an important part of the solution to creating healthier communities.

Strengthen the Alliance's Network

Lastly, the Alliance aims to strengthen its network of bicycle and pedestrian advocacy organizations by providing organizations the data they need to evaluate their success, prove results, and gain prominence in their communities. Alliance organizations can show data from this report to their community leaders, government officials, and media to highlight areas in which their community is successful, making progress, and in need of improvements.

Alliance organizations can also use these data to prove that advocacy gets results by showing the link between advocacy capacity and levels of bicycling and walking. This report is a tool for Alliance member organizations to gain prominence and win safe and accessible streets for bicycling and walking in their communities.

Study Areas and Data Collection

50 States / 51 Cities

The Benchmarking Project focuses data collection efforts on the 50
U.S. states, the 50 largest U.S. cities,
and New Orleans(1). The 51 largest cities were chosen for this study because these areas are the largest population areas of U.S. residents. Cities are also generally more densely developed than suburban and rural communities, and so may have greater opportunities for conversion of car trips to bicycling and walking.

National Data Collection

The Project Team identified national and uniform government sources for data in this report whenever possible. National data sources utilized for this report include:

- American Community Survey (ACS) (2005-2009)
- American Public Transportation Association (APTA) (2010)
- Behavioral Risk Factor Surveillance System (BRFSS) (2009)
- Federal Highway Administration's FMIS (FHWA) (2004-2010)
- Fatality Analysis Reporting System (FARS) (2005-2009)
- League of American Bicyclists (LAB) Bicycle Friendly States Program (2011)
- National Center for Safe Routes to School (2011)
- National Complete Streets Coalition (2011)
- National Health Interview Survey (NHIS) (2005)
- National Health and Nutrition Examination Study (NHANES) (2005-2006)
- National Household Travel Survey (2001, 2009)

Note: (1) New Orleans was included in the 2007 Benchmarking Report as a top 50 population city (according to 2005 ACS population data), but experienced dramatic population loss after Hurricane Katrina in 2005. Raleigh, NC, moved up into the top 50 largest cities and was the only new city added for this report in 2010. The project team chose to keep New Orleans in this analysis to maintain consistency in cities reported. Throughout this report we refer to the " 51 Largest U.S. Cities" which includes the 50 largest U.S. cities and New Orleans. Throughout this report, the top 51 largest U.S. cities are also referred to as "major" or "largest" U.S. cities.

Primary Benchmarks in This Report

Input Benchmarks	
Policy (Chapter 4)	- funding levels (per capita and \% of transportation dollars to bicycling and walking) - complete streets policies - goals to increase bicycling and walking - goals to increase safety - bike/ped master plan - bike/ped advisory committee - legislation - infrastructure (existing and planned miles per square mile) - bike-transit integration - bicycle racks on buses - bicycle parking spaces at transit stations (per capita) - bicycle access on rail
Programs (Chapter 5)	- adult and youth bicycle education courses participation (per capita) - Bike to Work Day participation (per capita) - open streets (ciclovia) initiatives participation (per capita) - city/state-sponsored bicycle rides participation (per capita) -Walk and Bike to School Day participation (per capita)
Advocacy (Chapter 6)	- presence of dedicated bike/ped advocacy organization - capacity indicators of advocacy organization - membership (per capita) - income (per capita) - staff levels (per capita) - contacts (per capita)
Outcome Benchmarks	
Mode share (Chapter 2)	- share of commuters - all trips - demographics - age - gender - ethnicity - income
Safety (Chapter 3)	- fatalities (number and percent of all traffic fatalities) - risk - disparities in mode share and fatalities - demographics - age
Public health (Chapter 8)	- overweight and obesity levels - hypertension (high blood pressure) levels - diabetes levels - asthma levels - physical activity levels

- National Transportation Enhancements Clearinghouse (2011)
- Rails-to-Trails Conservancy (2011)
- Safe Routes to School National Partnership (SRTSNP) State of the State's Report (2011)
- School Transportation News (2011)
- U.S. Census $(1990,2000)$
- United States Historical Climatology Network (USHCN)
- Web-based Injury Statistics Query and Reporting System (WISQARS) (2009)

In some cases, data in this report come from individual independent studies. The sources for all data are identified throughout the report with accompanying charts, tables, and graphics. An overview of the national data sources used in this report can be found in Appendix 1 on page 199. Individual studies cited in this report can be referenced in the Bibliography on page 231.

State and City Surveys

Many of the variables this report measures are not currently available from other national sources. In these cases, the project team relied on surveys completed by city and state agencies for data on indicators such as miles of bicycle facilities, city and state education efforts, and policies. The surveys were sent to leaders of Alliance organizations, government officials, and advocates in the 50 states and 51 cities represented in this report in October 2010. Because Alliance advocacy leaders can tap existing relationships with local government officials, they were able to help increase the survey response rate and ensure that finished surveys were as complete as possible.

Surveys were completed by department of transportation staff, metropolitan
planning organization staff, city officials, and Alliance advocacy leaders. In many cases surveys required input from multiple agencies because the requested data were not easily accessible in one place. The project team reached out to survey respondents through March 2011, with the final data for the report coming in early April. All data were entered into the Benchmarking Project's data collection tool, checked for quality control, and analyzed over the next several months. This report relies largely on selfreported data and while the Alliance has made all efforts to verify, the accuracy cannot be guaranteed.

Benchmarks in This Report

Bicycling and walking mode share (percent of all trips and percent of trips
to work) and safety are the two primary outcome benchmarks of this project. Because our ultimate goals are to increase bicycling and walking, and improve bicyclist and pedestrian safety, these are the ultimate benchmarks to measure the progress of states and cities. We also measure a number of variables (called "input benchmarks" here) which we believe, and research has shown, influence levels of bicycling, walking, and safety. Input benchmarks are the factors that affect the outcome benchmarks. Policies, programs, and advocacy capacity are the three primary areas measured in this report. While likely no single policy or program measured here is solely responsible for bicycling and walking levels and safety, a number of them combined may shape mode share and safety levels.

This report includes additional data on factors that may influence bicycling and walking including weather, residential

density, and levels of car ownership. This report also includes data on public health, an outcome benchmark of this project.

Using This Report

The Benchmarking Project is intended as a resource for government officials, bicycle and pedestrian advocates, researchers, and the media searching for comparable data and means to measure progress. We encourage you to search this report for your city or state to see how you compare to others. To make data easy to find, this report orders all data tables alphabetically by city or state. Charts and graphs are ordered by benchmark in order to most clearly see how states and cities compare with each other. Here are a few additional tips for using this report:

1. See where you measure up: Review the report for your city or state. See how your city/state compares to others. Are you below or above the average for other cities/ states? Note where you are leading and where you are behind.
2. Connect with the media: Consider issuing a press release or talking with the media about this report. Discuss how your state or city stacks up against others in bicycling and walking levels, safety, and funding. Highlight any areas where you are leading and opportunities for improvement. Use the data to support the work you are doing to promote bicycling and walking locally.
3. Evaluate your efforts: Think about where you have been focusing your efforts toward increasing bicycling and walking and safety. Are these efforts working? Look for trends in the data in
this report. Look for benchmarks set by cities and states that are leading in the area you are working in.
4. Set new goals: Use the data in this report to set new goals and refocus your efforts if needed. There are examples in this report of significant improvements in just a few short years. You will find which cities and states are leading in funding, safety, facilities, and other areas and will also see what the national average and averages for major U.S. cities are. Use these benchmarks to set goals for your city/state.
5. Use it as a reference book: The Alliance has heard from a number of government officials and advocates that the Benchmarking Report is a publication they reference frequently in their work. Keep this report on your office bookshelf in an accessible location or digital format. Use it when you are contacted by the media for statistics in your community, or when you need facts for a presentation or paper you are preparing. Use these data to support your work promoting bicycling and walking in your state or city.
6. Share it: Purchase extra hard copies of the report to give to your local elected and agency officials, organization leaders, and others who can use it. The report can be a great reason to have a meeting, talk about the current status, and improvements you can mutually strive for. It is always best to deliver the report in person. Also share the link to the Benchmarking Project Website with members, allies, and funders."

If you have questions about the data in this report, would like to request additional data from the Benchmarking Project, have feedback for our team, or other questions or inquiries, please don't hesitate to contact us at benchmarking@ PeoplePoweredMovement.org.

How Many People Bicycle and Walk?

The question of how many people in a given area bicycle and walk, and what percentage of trips bicycling and walking account for, is arguably the most important question for advocates and officials. Bicycling and walking levels are the ultimate outcome benchmarks of all efforts to promote bicycling and walking. These figures show communities if they are gaining or losing ground in their efforts to convert more trips to active transportation. Unfortunately, accurate and comparable data on bicycling and walking levels are still very limited(1).

Trip Data for This Report

This report relied on the most consistent and dependable source of data on levels of bicycling and walking available: the American Community Survey (ACS). The ACS is an annual survey which provides yearly estimates on the share of workers who usually commute by bicycle or foot. ACS data are available as 1-year estimates, 3 -year estimates, and 5 -year estimates. Five-year estimates provide the greatest accuracy, and 1-year estimates provide the most current data. In this report, 3-year estimates were used when comparing states and cities to provide a current, yet more accurate picture of levels of biking and walking. One-year estimates are used for national averages only. This report also includes the estimated bi-

[^3]
STATE RANKING

Cycling to Work

1. Oregon
2. Montana
3. Idaho
4. Colorado
5. Wyoming
6. California
7. Hawaii
8. Alaska
9. Washington
10. Arizona
11. Minnesota
12. Utah
13. New Mexico
14. Wisconsin
15. Massachusetts
16. Vermont
17. North Dakota
18. Florida
19. Illinois
20. South Dakota
21. Nevada
22. Nebraska
23. Maine
24. New York
25. Pennsylvania
26. Michigan
27. Iowa
28. Indiana
29. Kansas
30. Delaware
31. Louisiana
32. New Hampshire
33. Virginia
34. Ohio
35. New Jersey
36. Rhode Island
37. Maryland
38. Connecticut
39. Texas
40. South Carolina
41. North Carolina
42. Oklahoma
43. Kentucky
44. Missouri
45. Georgia
46. Mississippi
47. West Virginia
48. Tennessee
49. Arkansas
50. Alabama

Walking to Work

1. Alaska
2. New York
3. Vermont
4. Montana
5. Hawaii
6. South Dakota
7. Massachusetts
8. Maine
9. Wyoming
10. Pennsylvania
11. lowa
12. North Dakota
13. Oregon
14. Washington
15. Wisconsin
16. New Jersey
17. New Hampshire
18. Nebraska
19. Illinois
20. Idaho
21. Rhode Island
22. Minnesota
23. Colorado
24. Connecticut
25. Utah
26. West Virginia
27. California
28. Kansas
29. Maryland
30. Delaware
31. New Mexico
32. Kentucky
33. Michigan
34. Nevada
35. Virginia
36. Ohio
37. Indiana
38. Arizona
39. Louisiana
40. Missouri
41. Oklahoma
42. North Carolina
43. South Carolina
44. Mississippi
45. Arkansas
46. Texas
47. Georgia
48. Florida
49. Tennessee
50. Alabama
cycling and walking mode share for all trips from the 2009 National Household Travel Survey (NHTS).

This report looks at the share of commuters who walk or bike to work using data from the 1990 and 2000 decennial Census, and annual ACS between 2005 and 2009, and the most recent 3-year average (2007-2009) and 5-year average (2005-2009) from the ACS. Although work trips account for only 16% of all trips (NHTS 2009), these data provide a glimpse into trends in bicycling and walking levels over the last 19 years.

Findings on Mode Share

The Alliance used 2009 ACS data to determine that nationwide, an average of 3.5% of commuters get to work by bicycle (0.6%) or foot (2.9%). In the major U.S. cities studied here, the share of commuters by bicycle and foot is higher at 5.9% (1.0% bicycling and 4.9% walking). People in major cities are 1.7 times more likely to bicycle to work, and 1.7 times more likely to walk to work, than their counterparts nationwide.

Since the 2010 Benchmarking Report, Oregon remains the state with the highest bicycle to work share at 2.1%. Portland retains the highest share of workers commuting by bicycle-5.5\%among cities in this study. Alabama, Arkansas, and Tennessee rank lowest in bicycle to work commute share with only 0.1% of work trips by bicycle. San Antonio, Oklahoma City, and Dallas

Tables to left: Source: 2007-2009 ACS Notes: This ranking is based on the 3 -year average share of commuters who bicycle and walk to work. The state with the greatest share of commuters who bicycle or walk is ranked \#1. The 50th position is the state with the least percentage of commuters who bicycle or walk. View these data on pages 45 and 46 of this report..
rank lowest among cities for bicycle work commute share with just 0.1% of work trips by bicycle.

Alaska and Boston remain the state and city with the highest pedestrian commute share (8.0% and 13.9% of all workers commute by foot, respectively). Alabama, with only 1.3% of work trips by foot, ranks lowest among states. Fort Worth has the lowest pedestrian commute share among cities-just 1.2% of work trips by foot.

According to 2009 NHTS estimates the total bicycle mode share for all trip purposes nationwide is 1.0%. In the largest metropolitan areas, 1.1% of all trips are by bicycle.

U.S. Trips by Mode of Transport

Source: NHTS 2009 (Graph above) and ACS 2007-2009 (ranking to right) Notes: (ranking to right) This ranking is based on the share of commuters who bicycle and walk to work in cities. The city with the greatest percent of commuters who bicycle or walk is ranked \#1. The 51 st position is the city with the least percentage of people who commute by bicycle or foot. View this data on pages 45 and 47 of this report. (1) For details and reliability of state and city level NHTS estimates, please see Appendix 3, page 202.

CITY RANKING

Cycling to Work

1. Portiland, OR
2. Minneapolis
3. Seattle
4. San Francisco
5. Sacramento
6. Oakland
7. Washington, DC
8. Tucson
9. Denver
10. New Orleans
11. Honolulu
12. Philadelphia
13. Boston
14. Albuquerque
15. Austin
16. Chicago
17. Mesa
18. Long Beach
19. San Jose
20. San Diego
21. Los Angeles
22. Milwaukee
23. Atlanta
24. Columbus
25. Phoenix
26. New York
27. Fresno
28. Baltimore
29. Cleveland
30. Colorado Springs
31. Virginia Beach
32. Raleigh
33. Louisville
34. Jacksonville
35. Las Vegas
36. Tulsa
37. Detroit
38. Houston
39. Miami
40. Indianapolis
41. Nashville
42. Kansas City, MO
43. Arlington, TX
44. Omaha
45. El Paso
46. Memphis
47. Fort Worth
48. Charlotte
49. Dallas
50. Oklahoma City
51. San Antonio

Walking to Work

1. Boston
2. Washington, DC
3. New York
4. San Francisco
5. Seattle
6. Philadelphia
7. Honolulu
8. Baltimore
9. Minneapolis
10. New Orleans
11. Chicago
12. Portland, OR
13. Milwaukee
14. Cleveland
15. Oakland
16. Atlanta
17. Denver
18. Miami
19. Tucson
20. Los Angeles
21. Detroit
22. Sacramento
23. Long Beach
24. San Diego
25. Omaha
26. Columbus
27. Raleigh
28. Colorado Springs
29. Louisville
30. Tulsa
31. Houston
32. El Paso
33. Kansas City, MO
34. Indianapolis
35. Virginia Beach
36. Albuquerque
37. Austin
38. Memphis
39. Las Vegas
40. San Antonio
41. Fresno
42. Charlotte
43. Mesa
44. San Jose
45. Arlington, TX
46. Phoenix
47. Dallas
48. Nashville
49. Jacksonville
50. Oklahoma City
51. Fort Worth

The share of commuters who walk and bicycle to work has grown in recent

 years.Levels of walking to work increased in all but six states between 2005 and 2009. Levels of bicycling to work increased in all but four states during this time period. The southern U.S. remains the region with the lowest levels of bicycling and walking to work.

Levels of Walking to Work in the U.S.
Share of commuters who walk to work
= $1.30 \%-2.55 \%$
= $1.30 \%-2.55 \%$
$=2.56 \%-3.23 \%$
$=2.56 \%-3.23 \%$
= $3.24 \%-4.42 \%$
= $3.24 \%-4.42 \%$
= 4.43\%-7.96\%
= 4.43\%-7.96\%

Levels of Bicycling to Work in U.S.

Share of Commuters Who Bicycle and Walk 1990-2009

Sources: U.S. Census 1990, 2000; ACS 2005, ACS 2006, ACS 2007, ACS 2008, ACS 2009

NHTS data for 2009 show that nationally 10.5% of all trips are by foot. This is up 18% from the 2001 level of 8.9%. Rates of walking in major metropolitan areas ("cities") are even greater. NHTS estimates that 12.7% of all city trips are by foot. This is up 15% from the 2001 level of 11% of all city trips.

The 2009 NHTS also asked respondents how many times they took a trip by bicycle or foot in the last week. Results indicate that 13% of people take at least one bicycle trip per week and 68% of people take at least one walking trip per week. These amount to over 4 billion bicycle trips and nearly 41 billion walking trips in 2009 in the United States.

Trends in Bicycling and Walking Levels

The Alliance looked at data from the 1990 and 2000 decennial Census and annual American Community Surveys from 2005 through 2009 to examine trends in the share of commuters who bicycle or walk to work daily over the last two decades. (Find additional data on bicycling and walking levels over time in Appendix 4, page 205.)

The number of people who bicycle to work has increased steadily, rising 64% between 1990 and 2009 from 466,856 to 765,703 people who bicycle to work nationwide. The share of commuters who bicycle to work rose from 0.4% nationwide in 1990 and 2000 to 0.6% in 2009. (Continued page 41)

Share of Commuters Who Walk and Bicycle in 50 States

Source: 2007-2009 ACS (3-year average) Note: For a discussion of the challenges with determining accurate levels of bicycling and walking, see Appendix 3.

Alaska leads states for bicycle + walk to work mode share.

Alaska leads Vermont, New York, and Montana as the state with the highest percentage of commuters who bike or walk8.9% of all commuters. Alabama and Tennessee rank lowest among states with 1.4% and 1.5% bicycle and walk to work mode share, respectively.

Share of Commuters Who Walk and Bicycle in Largest U.S. Cities

Source: 2007-2009 ACS (3-year average) Note: For a discussion of the challenges with determining accurate levels of bicycling and walking, see Appendix 3.

Bicycling and walking mode share is significantly higher in cities. On average 5.8% of commuters in the largest U.S. cities bike or walk to work. Boston (15.4\%) leads Washington, DC (13.4\%), San Francisco (12.8\%), and Seattle (11.5%) as the cities with the highest rate of bicycling and walking to work.

> Boston ranks top for bicycle + walk to work mode share.

Looking Outside the Borders Bicycling and Walking Levels and Demographics

In our efforts to increase bicycling and walking in the United States, it is crucial to learn from the successful policies implemented in other countries, which have far higher levels of walking and bicycling as well as much better safety. A recent study by Pucher and Buehler (2010; chart this page) found that walking and cycling accounted for only about 12% of all trips in the United States in 2009, which is similar to levels in Ireland and Canada, but only about a third as much walking and cycling as many European countries.

With over a third of their trips by walking and cycling, countries like Sweden, Germany, Denmark, and the Netherlands set the standard for active travel in affluent countries with high levels of car ownership. With their bike mode shares of $9 \%-26 \%$, the same four countries have roughly 10 times as much
cycling as the U.S. Similarly, the U.S. has only about half as much walking as most European countries. The variation among countries is confirmed by large differences among cities in active travel rates, with American cities lagging far behind European cities (Pucher and Buehler 2008; chart page 37). In most large U.S. cities, the bicycle share of trips is less than 1%. Portland, Minneapolis, and Seattle have the highest bicycle to work share among cities: $5.5 \%, 4.1 \%$, and 2.9%, respectively. By comparison, many cities in Germany, Denmark, and the Netherlands have bicycle trip shares over 10%.

Examining bicycling and walking levels by trip distance shows that in the U.S., 38% of trips shorter than 1.6 miles (2.5 km) were by walking or cycling in 2009. For the same trip distance, the percent of short trips by walking or cycling

Bike and Walk Share of Daily Trips in the USA, Canada, Australia, and 11 European Countries

Source: J. Pucher and R. Buehler, 2010. "Walking and Cycling for Healthy Cities," Built Environment 36(5), pp. 391-414. Note: * denotes for the worktrip only, while other country surveys are for all trip purposes.

Bicycle Share of Trips

in 55 Cities in the U.S., Canada, Australia, UK, Germany, Denmark, and the Netherlands

was 63% in Germany, 70% in Denmark, and 54% in the Netherlands (see chart this page). The variation between the U.S. and other countries is greatest when looking at longer trip distances. Bicycling and walking account for only 3% of trips of 2.8 to 4 miles ($4.5-6.5 \mathrm{~km}$) in the U.S., compared to 16% in Germany, 21% in Denmark, and 27% in the Netherlands. Thus, at every trip distance, walking and cycling rates are much higher in northern Europe than in the U.S.

Perhaps the most striking differences among countries in walking and cycling rates are by age group. In Germany,

Bicycling and Walking Levels by Trip Distance

Source: J. Pucher and R. Buehler, 2010 "Walking and Cycling for Healthy Cities," Built Environment 36(5), pp. 391-414. URL link: http://policy. rutgers.edu/faculty/pucher/BuiltEnvironment_WalkBike_10Dec2010.pdf

Denmark, and the Netherlands, a high proportion of trips in all age categories are by walking or cycling (see chart page 39). In the U.S., only 18% of trips by children are made by walking or cycling, compared to 43% in Germany, 51% in Denmark, and 64% in the Netherlands. Similarly, only 10% of trips by American elderly are by walking or cycling, compared to 43% in Germany, 51% in Denmark, and 64% in the Netherlands. The much higher levels of walking and cycling in northern Europe provide important physical activity, mobility, and independence for all age groups, while children and seniors in the U.S. are often dependent on their families, neighbors, and friends for many trips they need to make.

Trends in bicycling and walking levels over the last 35 years vary greatly among
countries (see chart page 40). France and the UK, for example, suffered dramatic falls in walking and cycling, with roughly 50% declines in both countries. By comparison, walking and cycling levels have been roughly stable in the Netherlands, Denmark, and Germany, with declines in walking partly offset by increases in cycling. The much smaller declines in active transport in the Netherlands, Denmark, and Germany are due to far more carrestrictive policies in those countries since the 1970s, combined with a wide range of measures to encourage more walking and cycling. Car-restrictive measures have been far less common in France and the UK, and those two countries have also done less to promote walking and cycling through infrastructure, programs, and policies (Pucher and Buehler 2010). In ad-

Bicycling and Walking Levels by Age

Source: J. Pucher and R. Buehler, 2010. "Walking and Cycling for Healthy Cities," Built Environment 36(5), pp. 391-414. URL link: http://policy.rutgers.edu/faculty/pucher/BuiltEnvironment_ WalkBike_10Dec2010.pdf Note (above) (1): Methods for NHTS changed in 2001. Thus the increase from 1990 to 2001 may be due to methods. Moreover, the long-term trend may also be skewed because of that.
dition, suburban and exurban sprawl has been more extensive in France and the UK than in the Netherlands, Denmark, and Germany.

It is more difficult to gauge walking and cycling trends in the U.S. because there was an important change in the national travel survey methodology in 2001 that raised the walk mode share by capturing previously unreported walk trips. The survey results in the chart on page 40 suggest slight increases in walking and cycling levels in the USA, but in fact, they have probably declined. For example, the U.S. Census, using a consistent methodology over time, reports a substantial decline in walking and cycling to work: from 7.9% in 1970 to only 3.3% in 2008 (USDOC 2010).

Trends in Cycling and Walking

Share of all daily trips in the U.S., Germany, the Netherlands, France, the UK, and Denmark, 1974-2009

Source: J. Pucher land R. Buehler, 2010. "Walking and Cycling for Healthy Cities," Built Environment 36(5), pp. 391-414. URL link: http://policy.rutgers.edu/faculty/pucher/BuiltEnvironment_WalkBike_10Dec2010.pdf. Note: Methods for NHTS (U.S.) changed in 2001. Thus the increase from 1990 to 2001 may be due to methods. Moreover, the long-term trend may also be skewed because of that.

Pedestrian Commuters by Income Classification

During the same time period the number of people who walk to work fell 12% (from roughly 4.5 million people in 1990 to roughly 4.0 million people in 2009). The number of people who walk to work increased by just 5% between 2000 and 2009. The share of commuters who walk to work is now 2.9%, down from 3.9% in 1990. The share of commuters who walk to work has remained relatively stable since 2000.

Who Bicycles and

 Walks?
Demographic Data

Determining who walks and bicycles is also difficult. Because the ACS counts only commuter trips, trips taken for nonwork purposes, such as those made

Bicyclist and Pedestrian Mode Share by Income Class

Household Income						
	Less than $\$ 20,000$	$\$ 20,000$ to $\$ 399,999$	$\$ 40,000$ $\$ 74,999$	$\$ 75,000$ to $\$ 99,999$	$\$ 100,000$ and over	All
Bicyclists	1.0%	1.2%	1.0%	0.9%	1.1%	1.1%
Pedestrians	16.3%	10.3%	8.9%	8.9%	10.2%	10.5%

[^4]
A Look at Income

Income
Distribution of

Income
Distribution of

Source: NHTS 2009 Note: (1) Numbers round up and so appear to add to 101%.
by children, for recreational purposes, or in combination with other modes of transportation are left out. Many local trip count efforts include demographic survey questions (including some referenced in Appendix 6 of this report). However, because there is no standardized format used for these local surveys, the Alliance relied on ACS and NHTS data for demographic information.

Bicyclist and Pedestrian Income

There is almost no variation in the bicycle mode share by income class. Data from the 2009 NHTS show that bicycling mode share is similar for all income classes. However, a closer look at data by trip purpose reveals the percent of bicycle trips for recreational purposes rises with increasing income, from 27% to 41%, while the percent of utilitarian trips falls correspondingly with increased income. Regardless of the reason for bicycle trips, these data show that bicycling levels are roughly evenly distributed among all income classes.

While bicycling is distributed evenly among all income groups, walking to work is mainly by lower income workers. Data from ACS reveal that nearly half of people who walk to work earn less than $\$ 15,000$ per year. More than two-thirds of people who walk to work, on average, earn below $\$ 35,000$ a year. Washington, DC, San Francisco, and New York City have the most even income distribution among people who walk to work, with all income groups well represented. Memphis and Columbus have the least equal distribution with walking concentrated mostly among low-income groups. The difference in average median income among cities could also account for some variation and should be considered with these data.

Bicyclist and Pedestrian Gender

The gap between men and women is much wider among bicyclists than pedestrians. Na-

tionwide, just 27% of bicycle commuters are women (up from 23% in 2007). Just 24% of all bicycle trips are female according to the 2009 NHTS. Men make up 73% of bicycle commuters and 54% of pedestrian commuters. Walking is more even between the sexes. Men comprise 49% of the population and the same percentage of all walking trips.

Massachusetts and Wyoming are the only states where women walk to work at slightly higher rates than men. Men bicycle to work at higher rates than women in all states, though the gap varies among states. Montana has the smallest gap among men (66%) and women (34%) bicyclists. Delaware has the largest gap between men (91%) and women (9\%) bicyclists.

The gap between men and women also varies largely among major U.S. cities. Again, most cities have relatively small gaps between levels of men and women who walk to work. In roughly $1 / 6$ of cities surveyed, women walk to work at slightly higher rates. Philadelphia has the greatest percentage of pedestrian commuters who are women- 55%.
Mesa has the least percentage of pedestrian commuters who are women- 30%.

A Look at Ethnicity

Ethnicity of People Who Walk to Work

Source: ACS 2009

A Look at Gender

Walk Trips by Gender

Bike Trips by Gender

Source: NHTS 2009

On average, men make up 76% of bicycle commuters in the U.S. and 72% in major U.S. cities. According to ACS data, the vast majority of bicycle commuters in Omaha, El Paso, and Dallas are male, making these the cities with the greatest gender divide among bicyclists. Because of low sample sizes, it is possible that there are more female commuters in these cities, but it is not reflected in the data.

Bicyclist and Pedestrian Ethnicity

 ACS data reveal a fairly even distribution among bicyclists and pedestrians in regard to ethnicity. Asians, hispanics, and white/non-hispanic groups are slightly less likely to walk to work. African Americans/blacks are 35\% more likely to walk to work, comprising 4.8% of the U.S. workers, but accounting for 6.5% of pedestrian commuters. "Other ethnicities" which include American Indian, Alaska Native, Native Hawaiian, Other Asian Pacific Islander, and other minority ethnicities alone are also more likely to walk to (Continued page 48)Bicycling to Work in States

States	\% of commuters who bike to work	\% men	\% women
Alabama	0.1\%	84\%	16\%
Alaska	0.9\%	68\%	32\%
Arizona	0.9\%	78\%	22\%
Arkansas	0.1\%	74\%	26\%
California	1.0\%	75\%	25\%
Colorado	1.3\%	71\%	29\%
Connecticut	0.3\%	75\%	25\%
Delaware	0.4\%	91\%	9\%
Florida	0.6\%	76\%	24\%
Georgia	0.2\%	76\%	24\%
Hawaii	0.9\%	71\%	29\%
Idaho	1.3\%	70\%	30\%
Illinois	0.6\%	77\%	23\%
Indiana	0.4\%	73\%	27\%
lowa	0.4\%	71\%	29\%
Kansas	0.4\%	75\%	25\%
Kentucky	0.2\%	68\%	32\%
Louisiana	0.4\%	79\%	21\%
Maine	0.5\%	67\%	33\%
Maryland	0.3\%	80\%	20\%
Massachusetts	0.7\%	72\%	28\%
Michigan	0.4\%	71\%	29\%
Minnesota	0.8\%	70\%	30\%
Mississippi	0.2\%	86\%	14\%
Missouri	0.2\%	79\%	21\%
Montana	1.5\%	66\%	34\%
Nebraska	0.5\%	73\%	27\%
Nevada	0.5\%	81\%	19\%
New Hampshire	0.4\%	74\%	26\%
New Jersey	0.3\%	80\%	20\%
New Mexico	0.7\%	74\%	26\%
New York	0.5\%	77\%	23\%
North Carolina	0.2\%	80\%	20\%
North Dakota	0.6\%	81\%	19\%
Ohio	0.3\%	73\%	27\%
Oklahoma	0.2\%	69\%	31\%
Oregon	2.1\%	67\%	33\%
Pennsylvania	0.4\%	73\%	27\%
Rhode Island	0.3\%	69\%	31\%
South Carolina	0.2\%	79\%	21\%
South Dakota	0.5\%	72\%	28\%
Tennessee	0.1\%	77\%	23\%
Texas	0.3\%	78\%	22\%
Utah	0.8\%	72\%	28\%
Vermont	0.7\%	68\%	32\%
Virginia	0.3\%	72\%	28\%
Washington	0.9\%	70\%	30\%
West Virginia	0.2\%	74\%	26\%
Wisconsin	0.7\%	70\%	30\%
Wyoming	1.0\%	75\%	25\%
Mean/Average (1)	0.5\%	74\%	26\%
Median	0.4\%	74\%	26\%
High	2.1\%	91\%	34\%
Low	0.1\%	66\%	9\%

Bicycling to Work in Cities

Cities	\% of commuters who bike to work	\% men	\% women
Albuquerque	1.3\%	69\%	31\%
Arlington, TX	0.2\%	84\%	16\%
Atlanta	0.8\%	71\%	29\%
Austin	1.2\%	72\%	28\%
Baltimore	0.7\%	77\%	23\%
Boston	1.5\%	67\%	33\%
Charlotte	0.2\%	82\%	18\%
Chicago	1.1\%	76\%	24\%
Cleveland	0.5\%	65\%	35\%
Colorado Springs	0.5\%	74\%	26\%
Columbus	0.8\%	76\%	24\%
Dallas	0.1\%	91\%	9\%
Denver	1.8\%	70\%	30\%
Detroit	0.4\%	78\%	22\%
El Paso	0.2\%	92\%	8\%
Fort Worth	0.2\%	88\%	12\%
Fresno	0.7\%	77\%	23\%
Honolulu	1.7\%	72\%	28\%
Houston	0.4\%	77\%	23\%
Indianapolis	0.3\%	75\%	25\%
Jacksonville	0.4\%	80\%	20\%
Kansas City, MO	0.3\%	63\%	37\%
Las Vegas	0.4\%	89\%	11\%
Long Beach	1.0\%	85\%	15\%
Los Angeles	0.9\%	80\%	20\%
Louisville	0.4\%	62\%	38\%
Memphis	0.2\%	51\%	49\%
Mesa	1.1\%	84\%	16\%
Miami	0.4\%	70\%	30\%
Milwaukee	0.8\%	73\%	27\%
Minneapolis	4.1\%	63\%	37\%
Nashville	0.3\%	78\%	22\%
New Orleans	1.7\%	76\%	24\%
New York	0.7\%	75\%	25\%
Oakland	2.1\%	66\%	34\%
Oklahoma City	0.1\%	81\%	19\%
Omaha	0.2\%	97\%	3\%
Philadelphia	1.6\%	70\%	30\%
Phoenix	0.7\%	84\%	16\%
Portland, OR	5.5\%	62\%	38\%
Raleigh	0.5\%	76\%	24\%
Sacramento	2.2\%	67\%	33\%
San Antonio	0.1\%	81\%	19\%
San Diego	0.9\%	72\%	28\%
San Francisco	2.8\%	70\%	30\%
San Jose	0.9\%	79\%	21\%
Seattle	2.9\%	68\%	32\%
Tucson	1.9\%	71\%	29\%
Tulsa	0.4\%	75\%	25\%
Virginia Beach	0.5\%	53\%	47\%
Washington, DC	2.0\%	67\%	33\%
Mean/Average (1)	0.9\%	72\%	28\%
Median	0.7\%	75\%	25\%
High	5.5\%	97\%	49\%
Low	0.1\%	51\%	3\%

Source: ACS 2007-2009 (3-year average) Notes: (1) All averages are weighted.(2) For some states and cities the number of total bicyclists captured in the ACS is very small. Additionally, disaggregating these estimates into male and female categories might lead to unexpected and unreliable results. For example, some cities show particularly low or high shares of women commuting by bicycle.

Legend:

= High value
= Low value

Walking to Work in States

State	\% of commuters who walk to work	\% men	\% women	Percent of workers who walk to work by annual income (total = 100\%)			
				<\$15,000	$\begin{aligned} & \$ 15,000- \\ & \$ 34,999 \end{aligned}$	$\begin{aligned} & \hline \$ 35,000- \\ & \$ 64,999 \end{aligned}$	\$65,000+
Alabama	1.3\%	60\%	40\%	51\%	30\%	13\%	6\%
Alaska	8.0\%	63\%	37\%	34\%	32\%	22\%	12\%
Arizona	2.2\%	58\%	42\%	44\%	35\%	14\%	6\%
Arkansas	1.8\%	61\%	39\%	52\%	28\%	13\%	6\%
California	2.8\%	53\%	47\%	43\%	31\%	15\%	11\%
Colorado	3.0\%	56\%	44\%	48\%	27\%	16\%	10\%
Connecticut	2.9\%	54\%	46\%	50\%	24\%	15\%	10\%
Delaware	2.4\%	54\%	46\%	54\%	22\%	15\%	9\%
Florida	1.6\%	56\%	44\%	45\%	34\%	14\%	7\%
Georgia	1.6\%	59\%	41\%	46\%	32\%	13\%	9\%
Hawaii	4.7\%	56\%	44\%	34\%	40\%	18\%	8\%
Idaho	3.1\%	59\%	41\%	47\%	32\%	14\%	7\%
Illinois	3.2\%	53\%	47\%	46\%	26\%	15\%	12\%
Indiana	2.2\%	54\%	46\%	58\%	26\%	11\%	5\%
lowa	4.0\%	54\%	46\%	57\%	24\%	14\%	5\%
Kansas	2.7\%	56\%	44\%	52\%	29\%	14\%	5\%
Kentucky	2.3\%	57\%	43\%	55\%	30\%	10\%	5\%
Louisiana	2.0\%	55\%	45\%	52\%	31\%	12\%	5\%
Maine	4.1\%	55\%	45\%	48\%	30\%	16\%	7\%
Maryland	2.5\%	51\%	49\%	48\%	28\%	14\%	11\%
Massachusetts	4.6\%	48\%	52\%	42\%	25\%	19\%	15\%
Michigan	2.3\%	53\%	47\%	58\%	24\%	12\%	6\%
Minnesota	3.0\%	53\%	47\%	47\%	26\%	18\%	9\%
Mississippi	1.8\%	62\%	38\%	54\%	29\%	11\%	6\%
Missouri	2.0\%	57\%	43\%	53\%	28\%	13\%	6\%
Montana	5.2\%	55\%	45\%	45\%	30\%	18\%	7\%
Nebraska	3.2\%	56\%	44\%	49\%	31\%	15\%	4\%
Nevada	2.3\%	53\%	47\%	40\%	41\%	12\%	7\%
New Hampshire	3.2\%	52\%	48\%	50\%	28\%	14\%	8\%
New Jersey	3.3\%	54\%	46\%	40\%	33\%	17\%	10\%
New Mexico	2.4\%	57\%	43\%	47\%	31\%	15\%	7\%
New York	6.4\%	50\%	50\%	35\%	27\%	19\%	19\%
North Carolina	1.9\%	63\%	37\%	49\%	32\%	12\%	7\%
North Dakota	3.9\%	57\%	43\%	46\%	30\%	16\%	8\%
Ohio	2.3\%	53\%	47\%	57\%	26\%	12\%	5\%
Oklahoma	2.0\%	61\%	39\%	54\%	29\%	12\%	5\%
Oregon	3.9\%	52\%	48\%	46\%	30\%	15\%	9\%
Pennsylvania	4.0\%	51\%	49\%	49\%	28\%	15\%	8\%
Rhode Island	3.1\%	51\%	49\%	54\%	21\%	15\%	10\%
South Carolina	1.9\%	58\%	42\%	55\%	28\%	10\%	6\%
South Dakota	4.7\%	56\%	44\%	43\%	34\%	16\%	6\%
Tennessee	1.4\%	61\%	39\%	55\%	26\%	13\%	7\%
Texas	1.8\%	56\%	44\%	51\%	31\%	12\%	6\%
Utah	2.9\%	52\%	48\%	62\%	22\%	12\%	4\%
Vermont	6.2\%	50\%	50\%	50\%	29\%	14\%	7\%
Virginia	2.3\%	58\%	42\%	45\%	28\%	14\%	12\%
Washington	3.5\%	55\%	45\%	38\%	33\%	19\%	10\%
West Virginia	2.9\%	57\%	43\%	57\%	27\%	12\%	4\%
Wisconsin	3.4\%	53\%	47\%	53\%	26\%	14\%	6\%
Wyoming	4.0\%	49\%	51\%	38\%	35\%	19\%	9\%
Mean/Average (1)	2.9\%	54\%	46\%	46\%	29\%	15\%	10\%
Median	2.9\%	55\%	45\%	49\%	29\%	14\%	7\%
High	8.0\%	63\%	52\%	62\%	41\%	22\%	19\%
Low	1.3\%	48\%	37\%	34\%	21\%	10\%	4\%

Source: ACS 2007-2009 Notes: (1) All averages are weighted.

Walking to Work in Cities

Cities (1)	\% of commuters who walk to work	\% men	\% women	Percent of workers who walk to work by annual income (total = 100\%)			
				<\$15,000	$\begin{aligned} & \$ 15,000- \\ & \$ 34,999 \end{aligned}$	$\begin{aligned} & \$ 35,000- \\ & \$ 64,999 \end{aligned}$	\$65,000+
Albuquerque	2.1\%	49\%	51\%	53\%	27\%	16\%	4\%
Arlington, TX	1.9\%	58\%	42\%	55\%	32\%	10\%	3\%
Atlanta	4.2\%	62\%	38\%	40\%	30\%	15\%	15\%
Austin	2.0\%	60\%	40\%	43\%	32\%	15\%	10\%
Baltimore	6.7\%	46\%	54\%	39\%	33\%	18\%	10\%
Boston	13.9\%	48\%	52\%	29\%	22\%	25\%	25\%
Charlotte	2.0\%	61\%	39\%	39\%	30\%	13\%	18\%
Chicago	5.8\%	48\%	52\%	35\%	25\%	20\%	20\%
Cleveland	4.4\%	47\%	53\%	44\%	33\%	15\%	8\%
Colorado Springs	2.5\%	57\%	43\%	53\%	26\%	13\%	8\%
Columbus	2.6\%	60\%	40\%	60\%	28\%	9\%	3\%
Dallas	1.8\%	48\%	52\%	42\%	34\%	16\%	8\%
Denver	4.1\%	55\%	45\%	32\%	28\%	25\%	15\%
Detroit	3.3\%	59\%	41\%	52\%	33\%	11\%	4\%
El Paso	2.2\%	53\%	47\%	58\%	32\%	8\%	1\%
Fort Worth	1.2\%	60\%	40\%	53\%	30\%	14\%	2\%
Fresno	2.0\%	55\%	45\%	57\%	32\%	9\%	3\%
Honolulu	8.0\%	53\%	47\%	28\%	41\%	20\%	10\%
Houston	2.2\%	52\%	48\%	46\%	33\%	13\%	8\%
Indianapolis	2.1\%	55\%	45\%	50\%	31\%	14\%	5\%
Jacksonville	1.5\%	50\%	50\%	44\%	34\%	18\%	5\%
Kansas City, MO	2.1\%	59\%	41\%	39\%	38\%	14\%	9\%
Las Vegas	2.0\%	54\%	46\%	43\%	43\%	5\%	10\%
Long Beach	3.0\%	55\%	45\%	52\%	32\%	9\%	8\%
Los Angeles	3.5\%	52\%	48\%	48\%	30\%	14\%	8\%
Louisville	2.3\%	47\%	53\%	52\%	32\%	9\%	6\%
Memphis	2.0\%	59\%	41\%	62\%	25\%	11\%	3\%
Mesa	1.9\%	70\%	30\%	34\%	47\%	16\%	3\%
Miami	3.8\%	57\%	43\%	47\%	32\%	11\%	10\%
Milwaukee	4.6\%	50\%	50\%	50\%	28\%	14\%	7\%
Minneapolis	6.4\%	58\%	42\%	37\%	29\%	22\%	12\%
Nashville	1.7\%	54\%	46\%	43\%	21\%	24\%	12\%
New Orleans	5.8\%	60\%	40\%	41\%	38\%	14\%	7\%
New York	10.3\%	49\%	51\%	26\%	27\%	22\%	25\%
Oakland	4.4\%	53\%	47\%	38\%	27\%	23\%	12\%
Oklahoma City	1.4\%	64\%	36\%	43\%	37\%	13\%	7\%
Omaha	2.7\%	59\%	41\%	50\%	33\%	11\%	6\%
Philadelphia	8.4\%	45\%	55\%	35\%	28\%	22\%	15\%
Phoenix	1.8\%	58\%	42\%	38\%	38\%	16\%	8\%
Portland, OR	5.2\%	53\%	47\%	43\%	25\%	20\%	13\%
Raleigh	2.6\%	62\%	38\%	59\%	31\%	6\%	5\%
Sacramento	3.3\%	51\%	49\%	28\%	32\%	21\%	19\%
San Antonio	2.0\%	53\%	47\%	57\%	28\%	11\%	4\%
San Diego	2.9\%	53\%	47\%	45\%	30\%	15\%	10\%
San Francisco	10.0\%	54\%	46\%	23\%	25\%	25\%	26\%
San Jose	1.9\%	54\%	46\%	34\%	34\%	19\%	13\%
Seattle	8.6\%	53\%	47\%	28\%	30\%	25\%	17\%
Tucson	3.6\%	54\%	46\%	51\%	33\%	13\%	2\%
Tulsa	2.2\%	59\%	41\%	57\%	30\%	7\%	6\%
Virginia Beach	2.1\%	58\%	42\%	56\%	32\%	7\%	5\%
Washington, DC	11.4\%	50\%	50\%	20\%	19\%	25\%	36\%
Mean/Average (2)	4.9\%	51\%	49\%	35\%	28\%	19\%	18\%
Median	2.7\%	54\%	46\%	43\%	31\%	14\%	8\%
High	13.9\%	70\%	55\%	62\%	47\%	25\%	36\%
Low	1.2\%	45\%	30\%	20\%	19\%	5\%	1\%

[^5]Source: ACS 2007-2009 Notes: (1) For some cities the number of total bicyclists captured in the ACS is very small. Additionally, disaggregating these estimates into male and female categories might lead to unexpected and unreliable results. For example, some cities show particularly low or high shares of women commuting by bicycle. (2) All averages are weighted.

work comprising 7.1% of the working population and 9.9% of pedestrian commuters.

Age of Bicyclists and Pedestrians It is no surprise that youth, who are not of legal driving age, make up a disproportionate amount of bicycling trips. National estimates from NHTS indicate that youth under age 16 make up 39% of bicycling trips, despite accounting for just 21% of the population. This age group accounts for 17% of walking trips. Adults over age 65 account for 13% of the population and make up 10% of all walking trips and 6% of all bicycling trips. The rest of people age $16-65$ make up 66% of the population and account for 73% of all walking trips and 54% of trips by bicycle.

A Look at Age

Age of the U.S. Population

Source: ACS 2009

Age of People Who Walk

Source: NHTS 2009

Age of People Who Bicycle

Source: NHTS 2009
Note: (1) Numbers round down and so appear to equal 99%.
Legend:
$=$ Under age 16
$=$ Age 16-65
$=$ Over age 65

3: SAFETY

While news headlines are filled with deaths of war and cancer victims, the public rarely hears reports on the more than 32,000 people who die each year in traffic crashes. In 2010, according to the National Highway Traffic Safety Administration (NHTSA), 32,788 people died on U.S. roadways. The death toll of pedestrians alone is equivalent to a jumbo jet full of passengers crashing roughly every month (Ernst 2011). Even though bicycle and pedestrian fatalities have been decreasing, bicyclists and pedestrians are still disproportionately at risk.

Data for this chapter came largely from the NHTSA's Fatality Analysis

Reporting System (FARS). FARS collects data from police reports of traffic accidents and is the authoritative national source for traffic fatalities in the United States. Data on bicycle and pedestrian injuries came from CDC's Web-based Injury Statistics Query and Reporting System (WISQARS).

FARS data indicate that bicyclists and pedestrians account for 13.5% of all traffic fatalities, despite the fact that they make up roughly 11.5% of all trips (according to NHTS estimates). In the 51 largest U.S. cities bicycling and walking account for 13.8% of all trips, yet bicyclists and pedestrians represent 30.0% of all traffic fatalities.

Victim Demographics

According to FARS, between 2007-2009, nearly one-quarter of all bicycle fatality victims are youth (under age 16) and seniors (over age 65). These age groups account for 26% of pedestrian fatalities. Seniors (over age 65) are at a disproportionate risk, accounting for just 10% of all walking trips and roughly 19% of pedestrian fatalities. Adults over age 65 make up 6% of all bicycling trips and account for roughly 10% of bicyclist fatalities.
In some areas the risk facing seniors is even greater. In Honolulu, where 46% of all traffic fatalities are pedestrians, 69% of victims are over age 65. Similarly in San Francisco, where 49% of all traffic fatalities are pedestrians, 50% of these are seniors. While cities do vary in their demographic composition, these rates of senior fatalities are still disproportionately higher than the percent of trips they represent.

What's the Risk?

To understand bicycle and pedestrian safety in a city or state, it is not enough to

Overview of Walking and Pedestrian Safety Nationwide and in Largest U.S. Cities

Sources: FARS 2009, NHTS 2009, ACS 2009, WISQARS 2009
Note: (1) City-level data for pedestrian injuries is unavailable.

Overview of Bicycling and Bicycle Safety Nationwide and in Largest U.S. Cities

Sources: FARS 2009, NHTS 2009, ACS 2009, WISQARS 2009
Note: (1) City-level data for bicycle injuries is unavailable.

SAFETY DEMOGRAPHICS Age and Risk

Pedestrians Age
Distribution

Pedestrians Injuries

Cyclists Injuries by Age

Pedestrian Fatalities

Cyclists Age Distribution
Cyclist Fatalities by Age

Pedestrian Injuries
Walk Trips by Gender

Bike Trips by Gender

Bicycle Injuries by Gender

Age Legend:

Source: NHTS 2009, WISQARS 2009, FARS 2007-2009

Source: NHTS 2009, WISQARS 2009

Note: (1) Numbers round up and so appear to add to 101\%.
simply look at the number of fatalities. The level of bicycling and walking in an area also must be taken into account to determine what the risk of bicycling or walking is. For example, if a city had just 100 people who bicycled and had one bicycle fatality and another city had 6,000 people who bicycled and had two bicycle fatalities, the first city would have a higher fatality rate. If 1 out of 100 bicyclists was a victim of a traffic fatality, the risk in that community would be much greater than the one where two out of 6,000 bicyclists died in traffic.

To measure risk, the Alliance divided the number of annual bicycle and pedestrian fatalities by population (weighted, or multiplied, by share of the population biking and walking to work). Multiplying population times commuter mode share allows us to better estimate exposure levels for bicycling and walking. Unlike the ACS, national travel surveys including all trip purposes have sample sizes that are too small to disaggregate to the state and city level. Thus, our method is a rough approximation of exposure levels that takes both population and cycling levels into account. Exposure data are rough approximations and fatalities can vary greatly from year to year. Thus, all fatality rate data should be interpreted as rough estimates of risk, and not as the exact risk level for any city or state.

FARS and ACS data indicate that nationwide, 4.2 bicyclists are killed per year per 10,000 daily bicyclists. Bicy-

Sources: FARS 2007-2009, ACS 2007-2009 Notes: This ranking is based on the fatality rate which is calculated by dividing the number of annual bicycle fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population biking to work). View these data on pages 56 and 57 of this report.

Safest Places to Bike RANKING STATES

1. South Dakota
2. Vermont
3. Oregon
4. Nebraska
5. North Dakota
6. Colorado
7. Montana
8. Wyoming
9. Idaho
10. Washington
```
11. Massachusetts
12. Wisconsin
13. Rhode Island
14. Minnesota
15. Utah
16. Hawaii
17. Maine
18. Alaska
19. Pennsylvania
20. California
21. Illinois
22. West Virginia
23. Missouri
24. lowa
25. New Mexico
26. Virginia
27. Arizona
28. Kansas
29. New Hampshire
30. Connecticut
31. New York
32. Kentucky
33. Michigan
34. Maryland
35. Ohio
36. Indiana
37. New Jersey
38. Nevada
39. Oklahoma
40. Texas
41. Georgia
42. Tennessee
43. Louisiana
44. North Carolina
45. Florida
46. Alabama
47. Arkansas
48. Delaware
49. South Carolina
50. Mississippi
```


CITIES

1. Honolulu
2. Milwaukee
3. Omaha
4. Washington, DC
5. Portland, OR
6. San Francisco
7. Sacramento
8. Boston
9. Minneapolis
10. Austin
11. San Jose
12. Seattle
13. Oakland
14. Philadelphia
15. Chicago
16. Denver
17. Atlanta
18. Los Angeles
19. New Orleans
20. Tulsa
21. Baltimore
22. Long Beach
23. San Diego
24. Albuquerque
25. Virginia Beach
26. Tucson
27. Mesa
28. Columbus
29. New York
30. Houston
31. Oklahoma City
32. Detroit
33. Indianapolis
34. Kansas City, MO
35. Cleveland
36. Phoenix
37. Nashville
38. El Paso
39. Miami
40. Colorado Springs
41. Raleigh
42. Louisville
43. Dallas
44. Fort Worth
45. Fresno
46. Las Vegas
47. San Antonio
48. Memphis
49. Jacksonville
50. Arlington, TX
51. Charlotte

Safest Place	Walk RANKING
STATES	CITIES
1. Vermont	1. Boston
2. Nebraska	2. Omaha
3. Alaska	3. Minneapolis
4. Wyoming	4. Colorado Springs
5. lowa	5. New York
6. South Dakota	6. Seattle
7. North Dakota	7. Washington, DC
8. Maine	8. Cleveland
9. Massachusetts	9. Philadelphia
10. Minnesota	10. San Francisco
11. New Hampshire 12. New York	11. Portland, OR 12. Chicago
13. Wisconsin	13. Honolulu
14. Washington	14. Baltimore
15. Idaho	15. Oakland
16. Kansas	16. Milwaukee
17. Montana	17. Virginia Beach 18. Denver
19. Oregon	19. Tucson
20. Colorado	20. Sacramento
21. Illinois	21. San Diego
22. Connecticut	22. New Orleans
23. Utah	23. Mesa
24. Hawaii	24. Indianapolis
25. Ohio	25. Columbus
26. Indiana	26. Los Angeles
27. West Virginia	27. Atlanta
28. Rhode Island	28. Arlington, TX
29. Virginia	29. Long Beach
30. Kentucky	30. San Jose
31. New Jersey	31. Raleigh
32. Michigan	32. Las Vegas
33. Missouri	33. Fresno
34. California	34. Memphis
35. Oklahoma	35. Charlotte
36. Tennessee	36. San Antonio
37. Nevada	37. El Paso
38. Arkansas	38. Detroit
39. Maryland	39. Nashville
40. Delaware	40. Louisville
41. North Carolina	41. Houston
42. Texas	42. Miami
43. New Mexico	43. Kansas City, MO
44. Arizona	44. Austin
45. Georgia	45. Albuquerque
46. Mississippi	46. Oklahoma City
47. Alabama	47. Tulsa
48. South Carolina	48. Dallas
49. Louisiana	49. Phoenix
50. Florida	50. Jacksonville 51. Fort Worth

STATES

1. Vermont

2. Nebraska
3. Alaska
4. Wyoming
5. Iowa
6. South Dakota
7. North Dakota
8. Maine
9. Massachusetts
10. Minnesota
11. Portland, OR
12. Chicago
13. Baltimore
14. Oakland
15. Milwaukee
. Virginia Beach
16. Sacramento
17. San Diego
18. Mesa
19. Indianapolis
20. Columbus
21. Los Angeles
22. Arlington, TX

Long Beach
31. Raleigh
32. Las Vegas
33. Fresno
34. Memphis
5. Charlotte
37. El Paso
38. Detroit
39. Nashville
40. Louisville
12. Miami
43. Kansas City, MO
44. Austin
45. Albuquerque

47 Tulsa
48. Dallas
9. Phoenix
51. Fort Worth

Bicyclist and

 pedestrian fatality risk is lower in major U.S. cities.clists are safer in major U.S. cities(1) where the fatality rate is 2.4 fatalities per year per 10,000 daily bicyclists. South Dakota and Vermont are the safest states for bicycling with 0 deaths per 10,000 daily bicyclists. Mississippi is the most dangerous state for bicycling (14.1 deaths per 10,000 daily bicyclists) followed by South Carolina (13.5 deaths per 10,000 daily bicyclists). Honolulu, Milwaukee, and Omaha report no bicycle fatalities in the years studied. Washington, DC, Portland, OR, and San Francisco are the next safest cities for bicycling with fatality rates of $0.5,0.9$, and 0.9 deaths per 10,000 daily bicyclists, respectively. Charlotte, Arlington, TX, and Jacksonville are the least safe major cities for bicycling with $18.5,14.5$, and 14.2 bicyclists killed per 10,000 daily bicyclists, respectively.

Pedestrians are similarly safer in major U.S. cities where 4.0 pedestrian fatalities occur each year for every 10,000 daily pedestrians. In states, there are 5.0 pedestrian deaths per 10,000 daily pedestrians. Vermont is also the safest state for walking with 0.9 pedestrian

Sources: FARS 2007-2009, ACS 2007-2009 Notes: This ranking is based on the fatality rate which is calculated by dividing the number of annual pedestrian fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population walking to work). View these data on pages 56 and 62 of this report. (1) Percentage of fatalities that are bicyclists in cities is greater than nationwide, but a higher number of people biking in cities makes the fatality rate lower for cities than nationwide.

Pedestrian Risk by State

Bicyclist Risk by State

Source: FARS 2007-2009, ACS 2007-2009 Notes: These maps use a fatality rate calculated by dividing the number of annual bicycle and pedestrian fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population biking and walking to work-to adjust for exposure). Because of the approximate nature of the exposure data and great fluctuations in fatality data from year to year, this rate should be seen as a rough estimate.

deaths per 10,000 daily pedestrians. Florida (17.0 deaths per 10,000 daily pedestrians) is followed by Louisiana (12.0 deaths per 10,000 daily pedestrians), and South Carolina (11.7 deaths per 10,000 daily pedestrians) as the least safe states for walking. Boston, Omaha, and Minneapolis have the lowest pedestrian fatality rates among major U.S. cities with $0.9,1.6$, and 1.6 pedestrian deaths per 10,000 daily pedestrians, respectively. Fort Worth has the highest pedestrian fatality rates with 20.0 pedestrian deaths per 10,000 daily pedestrians.

Emerging Trends

Traffic fatalities are on the decline throughout the U.S., including those involving bicyclists and pedestrians. Between 1995 and 2009 the number of (Continued page 64)

Fatality Trends

Bicycle Fatalities by Age

Source: FARS 1975-2009

Pedestrian Safety in States

12% of all traffic fatalities in the
 U.S. are pedestrians.

Legend:

$\varnothing=$ Not applicable
= High value
= Low value

Sources: FARS 2007-2009, ACS 2007-2009 Notes: (1) All fatality data are based on the 3 -year average number of fatalities from 2007-2009. (2) Pedestrian fatality rate was calculated by dividing the number of annual pedestrian fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population walking to workto adjust for exposure). Because of the approximate nature of the exposure data and great fluctuations in fatality data from year to year, this rate should be seen as a rough estimate. (3) All averages are weighted by population except for annual reported pedestrian fatalities.

State	Annual reported pedestrian fatalities (1)	Ped. fatalities per 10K daily peds $(1,2)$	\% Of all traffic fatalities that are pedestrians (1)	\% Of pedestrian fatalities	
				Under age 16	Over age 65
Alabama	67.0	11.0	6.9\%	5\%	13\%
Alaska	8.3	1.5	12.0\%	16\%	8\%
Arizona	131.7	9.1	14.0\%	5\%	17\%
Arkansas	42.0	8.1	6.9\%	7\%	13\%
California	611.0	5.9	17.4\%	7\%	24\%
Colorado	49.3	3.3	9.4\%	7\%	20\%
Connecticut	35.0	3.4	12.8\%	7\%	30\%
Delaware	17.3	8.2	14.7\%	4\%	13\%
Florida	495.3	17.0	17.0\%	5\%	19\%
Georgia	150.3	9.4	10.2\%	6\%	10\%
Hawaii	21.0	3.5	17.8\%	0\%	48\%
Idaho	12.7	2.6	5.4\%	13\%	37\%
Illinois	139.0	3.4	13.0\%	9\%	18\%
Indiana	54.3	3.8	6.8\%	10\%	21\%
lowa	20.3	1.7	5.0\%	16\%	20\%
Kansas	20.3	2.6	5.1\%	7\%	26\%
Kentucky	50.3	5.0	6.1\%	8\%	11\%
Louisiana	108.3	12.0	11.9\%	10\%	6\%
Maine	11.0	2.0	6.6\%	6\%	21\%
Maryland	115.0	8.1	19.7\%	7\%	12\%
Massachusetts	63.3	2.1	16.8\%	5\%	34\%
Michigan	121.0	5.2	12.4\%	8\%	16\%
Minnesota	33.3	2.1	7.2\%	15\%	24\%
Mississippi	55.3	10.4	7.0\%	7\%	14\%
Missouri	70.0	5.9	7.4\%	9\%	15\%
Montana	13.7	2.7	5.6\%	12\%	22\%
Nebraska	7.3	1.3	3.2\%	5\%	23\%
Nevada	47.7	7.8	15.2\%	7\%	17\%
New Hampshire	9.3	2.2	7.4\%	11\%	43\%
New Jersey	147.0	5.1	23.2\%	6\%	22\%
New Mexico	43.3	9.1	11.4\%	5\%	9\%
New York	293.0	2.3	23.6\%	6\%	31\%
North Carolina	159.3	9.0	10.8\%	7\%	10\%
North Dakota	5.0	2.0	4.2\%	13\%	7\%
Ohio	97.3	3.7	8.4\%	12\%	16\%
Oklahoma	49.3	6.8	6.6\%	8\%	8\%
Oregon	44.7	3.0	10.7\%	3\%	19\%
Pennsylvania	140.7	2.8	10.0\%	9\%	28\%
Rhode Island	13.7	4.2	18.9\%	7\%	39\%
South Carolina	99.3	11.7	10.3\%	5\%	11\%
South Dakota	7.0	1.9	5.3\%	0\%	24\%
Tennessee	66.3	7.4	6.1\%	10\%	17\%
Texas	396.3	9.1	11.9\%	8\%	11\%
Utah	27.7	3.5	10.1\%	12\%	20\%
Vermont	3.3	0.9	4.7\%	0\%	30\%
Virginia	78.7	4.4	9.0\%	4\%	19\%
Washington	61.3	2.6	11.6\%	7\%	23\%
West Virginia	20.3	3.9	5.2\%	7\%	15\%
Wisconsin	49.7	2.5	7.8\%	11\%	26\%
Wyoming	3.7	1.7	2.5\%	9\%	9\%
Mean/Average (3)	\varnothing	5.2	11.7\%	7\%	19\%
Median	49.3	3.7	9.4\%	7\%	19\%
High	611.0	17.0	23.6\%	16\%	48\%
Low	3.3	0.9	2.5\%	0\%	6\%

Bicycle Safety in States

State	Annual reported bicycle fatalities (1)	Bicycle fatalities per 10K daily bicyclists (1.2)	\% Of all traffic fatalities that are bicyclists (1)	\% Of bicycle fatalities (1)	
				Under age 16	Over age 65
Alabama	6.3	10.9	0.6\%	32\%	0\%
Alaska	1.7	2.7	2.4\%	20\%	0\%
Arizona	21.7	3.9	2.3\%	11\%	15\%
Arkansas	4.3	11.3	0.7\%	23\%	0\%
California	105.7	3.0	3.0\%	13\%	15\%
Colorado	11.0	1.7	2.1\%	27\%	6\%
Connecticut	4.0	4.3	1.5\%	33\%	8\%
Delaware	4.0	12.6	3.4\%	33\%	17\%
Florida	117.3	10.8	4.0\%	5\%	13\%
Georgia	18.7	8.3	1.3\%	14\%	7\%
Hawaii	3.0	2.5	2.5\%	0\%	0\%
Idaho	3.7	1.8	1.5\%	9\%	18\%
Illinois	21.7	3.0	2.0\%	18\%	5\%
Indiana	13.3	5.3	1.7\%	25\%	8\%
lowa	4.7	3.7	1.1\%	14\%	14\%
Kansas	4.3	4.2	1.1\%	15\%	15\%
Kentucky	4.7	4.7	0.6\%	21\%	0\%
Louisiana	15.7	9.8	1.7\%	11\%	6\%
Maine	1.7	2.7	1.0\%	0\%	0\%
Maryland	8.0	4.9	1.4\%	21\%	4\%
Massachusetts	9.0	1.9	2.4\%	22\%	4\%
Michigan	20.3	4.8	2.1\%	15\%	13\%
Minnesota	9.0	2.2	1.9\%	19\%	22\%
Mississippi	7.3	14.1	0.9\%	23\%	5\%
Missouri	4.7	3.4	0.5\%	29\%	7\%
Montana	2.7	1.8	1.1\%	25\%	0\%
Nebraska	1.3	1.5	0.6\%	25\%	0\%
Nevada	7.7	6.0	2.4\%	26\%	4\%
New Hampshire	2.0	4.3	1.6\%	50\%	0\%
New Jersey	15.0	5.6	2.4\%	20\%	9\%
New Mexico	5.7	3.8	1.5\%	6\%	24\%
New York	40.7	4.4	3.3\%	13\%	11\%
North Carolina	22.0	10.0	1.5\%	5\%	5\%
North Dakota	0.7	1.6	0.6\%	0\%	0\%
Ohio	18.0	5.1	1.6\%	15\%	9\%
Oklahoma	6.0	7.0	0.8\%	22\%	17\%
Oregon	11.0	1.4	2.6\%	6\%	18\%
Pennsylvania	14.3	2.7	1.0\%	23\%	0\%
Rhode Island	0.7	2.1	0.9\%	0\%	0\%
South Carolina	15.3	13.5	1.6\%	9\%	9\%
South Dakota	0.0	0.0	0.0\%	\varnothing	\varnothing
Tennessee	7.3	8.7	0.7\%	41\%	5\%
Texas	49.7	7.9	1.5\%	17\%	7\%
Utah	5.0	2.4	1.8\%	33\%	13\%
Vermont	0.0	0.0	0.0\%	\varnothing	\varnothing
Virginia	10.3	3.8	1.2\%	13\%	0\%
Washington	10.7	1.9	2.0\%	6\%	9\%
West Virginia	1.0	3.3	0.3\%	0\%	33\%
Wisconsin	8.7	2.1	1.4\%	19\%	4\%
Wyoming	1.0	1.8	0.7\%	0\%	0\%
Mean/Average (3)	\varnothing	4.8	1.8\%	14\%	10\%
Median	7.3	3.8	1.5\%	16\%	6\%
High	117.3	14.1	4.0\%	50\%	33\%
Low	0.0	0.0	0.0\%	0\%	0\%

> Legend: $\begin{aligned} \varnothing & =\text { Not applicable } \\ & =\text { High value } \\ & =\text { Low value }\end{aligned}$

Sources: FARS 2007-2009, ACS 20072009 Notes: (1) All fatality data are based on the 3 -year average number of fatalities from 2007-2009. (2) Bicyclist fatality rate was calculated by dividing the number of annual bicycle fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population biking to work-to adjust for exposure). Because of the approximate nature of the exposure data and great fluctuations in fatality data from year to year, this rate should be seen as a rough estimate. (3) All averages are weighted by population except for annual reported bicycle fatalities.

CHAPTER 3

Bicycle Safety in Cities

City	Annual reported bicycle fatalities (1)	Bicycle fatalities per 10K daily bicyclists (1,2)	\% Of all traffic fatalities that are bicyclists (1)	\% Of bicycle fatalities (1)	
				Under age 16	$\begin{gathered} \text { Over age } \\ 60 \end{gathered}$
Albuquerque	2.0	2.9	4.2\%	17\%	17\%
Arlington ,TX	1.0	14.5	3.6\%	0\%	0\%
Atlanta	0.7	1.5	1.2\%	0\%	0\%
Austin	1.0	1.1	1.6\%	0\%	0\%
Baltimore	1.0	2.4	2.3\%	0\%	33\%
Boston	1.0	1.0	4.1\%	0\%	0\%
Charlotte	2.0	18.5	3.0\%	0\%	0\%
Chicago	4.7	1.5	2.7\%	21\%	14\%
Cleveland	1.3	5.7	3.6\%	25\%	0\%
Colorado Springs	1.3	6.5	6.1\%	0\%	0\%
Columbus	2.0	3.3	3.5\%	0\%	17\%
Dallas	1.7	8.7	1.2\%	60\%	20\%
Denver	1.7	1.5	4.1\%	20\%	20\%
Detroit	1.7	4.8	1.5\%	20\%	0\%
El Paso	0.7	6.2	1.4\%	0\%	50\%
Fort Worth	1.0	8.8	1.5\%	33\%	0\%
Fresno	3.3	10.4	9.9\%	20\%	10\%
Honolulu	0.0	0.0	0.0\%	\varnothing	\varnothing
Houston	3.7	4.3	1.6\%	0\%	18\%
Indianapolis	1.3	4.9	1.8\%	25\%	0\%
Jacksonville	4.7	14.2	3.7\%	0\%	21\%
Kansas City, MO	0.7	5.5	1.1\%	0\%	0\%
Las Vegas	2.3	10.7	5.8\%	14\%	0\%
Long Beach	1.3	2.8	4.1\%	0\%	25\%
Los Angeles	6.3	1.9	2.4\%	5\%	21\%
Louisville	2.0	8.2	2.9\%	0\%	0\%
Memphis	1.3	12.5	1.3\%	50\%	0\%
Mesa	1.7	3.3	5.3\%	20\%	40\%
Miami	1.0	6.4	2.0\%	0\%	0\%
Milwaukee	0.0	0.0	0.0\%	\varnothing	\varnothing
Minneapolis	1.7	1.0	7.6\%	0\%	20\%
Nashville	1.0	5.7	1.5\%	33\%	0\%
New Orleans	1.3	2.2	3.3\%	0\%	0\%
New York	19.7	3.5	7.1\%	10\%	12\%
Oakland	1.0	1.2	3.1\%	0\%	0\%
Oklahoma City	0.3	4.6	0.5\%	0\%	0\%
Omaha	0.0	0.0	0.0\%	\varnothing	\varnothing
Philadelphia	3.3	1.3	3.2\%	10\%	0\%
Phoenix	6.7	5.7	4.0\%	5\%	5\%
Portland, OR	2.7	0.9	9.4\%	0\%	0\%
Raleigh	1.3	7.1	4.3\%	0\%	0\%
Sacramento	1.0	1.0	2.9\%	0\%	33\%
San Antonio	2.0	11.3	1.7\%	17\%	0\%
San Diego	3.3	2.9	3.9\%	10\%	0\%
San Francisco	2.0	0.9	4.7\%	0\%	0\%
San Jose	1.0	1.1	2.2\%	33\%	0\%
Seattle	2.0	1.1	8.1\%	0\%	0\%
Tucson	3.3	3.2	6.7\%	40\%	0\%
Tulsa	0.3	2.2	0.6\%	0\%	100\%
Virginia Beach	0.7	3.0	2.4\%	0\%	0\%
Washington, DC	0.7	0.5	1.9\%	0\%	0\%
Mean/Average (3)	2.2	2.4	3.1\%	11\%	10\%
Median	1.3	3.1	2.9\%	0\%	0\%
High	19.7	18.5	9.9\%	60\%	100\%
Low	0.0	0.0	0.0\%	0\%	0\%

3\% of traffic fatalities in major U.S. cities are bicyclists.

Honolulu, Milwaukee, and Omaha have the lowest number of annual reported bicycle fatalities (0) among the largest U.S. cities. Fresno has the greatest percentage of fatalities that are bicyclists: 9.9% of traffic fatalities are bicyclists although only 0.7% of commuters bicycle to work.

[^6]Sources: FARS 2007-2009, ACS 2007 Notes: (1) All fatality data are based on the 3 -year average number of fatalities from 2007-2009. (2) Bicyclist fatality rate was calculated by dividing the number of annual bicycle fatalities (averaged between 20072009) by population (weighted, or multiplied, by share of the population biking to work). (3) All averages are weighted by population except annual reported bicycle fatalities.

Looking Outside the Borders Pedestrian and Bicyclist Fatalities and Injuries

In an effort to foster safety for bicycling and walking, it is also crucial that the U.S. look to other countries to see what safety levels have been achieved. One such comparison by $\mathrm{Pu}-$ cher and Buehler (2010; chart this page) found that the U.S. has the highest rates of bicyclist and pedestrian injuries and fatalities when compared to four other developed countries: the UK, Germany, Denmark, and the Netherlands.

The bicyclist fatality rate, calculated as bicyclists killed per 100 million km bicycled, is 1.7 times greater in the U.S. than any of the other four countries. For every 100 million km bicycled in the U.S. there are 5.5 bicyclist fatalities. The UK has the next highest bicycle fatality rate with 3.3 bicyclist fatalities per 100 million km cycled. The U.S. also leads the UK for bicyclist injuries. In the U.S., there are 33.5 bicyclists injured per 10 million km bicycled. This is nearly six times the U.K. rate of 5.7 bicyclists injured per 10 million km bicycled. The Netherlands is the safest country for cycling, with by far the lowest fatality and injury rates.

Pedestrian fatality rate was calculated with a similar method-pedestrians killed per 100 million km walked. The U.S. pedestrian fatality rate of 9.7 fatalities for every 100 million km walked is 2.7 times greater than that of any other country studied. The UK is again behind the U.S. with 3.6 pedestrian fatalities per 100 million km walked. More than 13 pedestrians are injured for every 10 million km walked in the U.S. This compares to 3.3 pedestrian injuries in the UK The Netherlands also leads other countries in pedestrian safety
having the lowest rate of pedestrian fatalities and injuries.

An examination of bicyclist and pedestrian fatalities since 1970 reveals that other countries are experiencing the same decline in fatalities as the U.S. The U.S., UK, Denmark, Germany, and the Netherlands have all seen a general downward trend in number of bicyclist and pedestrian fatalities over the last four decades. However, the U.S. again lags behind international peers with the least decline while the Netherlands has seen the greatest decline in fatalities.

> Bicyclist and Pedestrian Fatality and Injury Rates

fatalities per 100 million $\mathrm{km} /$ injuries per 10 million km
Source: John Pucher and Ralph Buehler, "Walking and Cycling for Healthy Cities," Built Environment, Vol 36, No. 5, December 2010, pp. 391-414. URL link: http://policy.rutgers.edu/faculty/ pucher/BuiltEnvironment_WalkBike_10Dec2010.pdf

Trend in Bicyclist Fatalities

Trend in Pedestrian Fatalities

Source: John Pucher and Ralph Buehler, "Walking and Cycling for Healthy Cities," Built Environment, Vol 36, No. 5, December 2010, pp. 391-414 URL link: http://policy.rutgers.edu/faculty/pucher/BuiltEnvironment_ WalkBike_10Dec2010.pdf.

Bicyclist and

 pedestrian fatalities have declined much more in other countries than in the U.S.
Pedestrian Safety in Cities

Pedestrians

 account for27% of traffic fatalities in major U.S. cities.

Despite comprising 5\% of trips to work and nearly 13% of all trips, pedestrians in major U.S. cities account for over a quarter of traffic fatalities. In Honolulu, New York, and San Francisco, roughly half of all traffic fatalities are pedestrians. Boston has the lowest pedestrian fatality rate.

Legend:

= High value
= Low value
Sources: FARS 2007-2009, ACS 2009 Notes: (1) All fatality data in this table are based on the 3 -year average number of fatalities from 20072009. (2) Pedestrian fatality rate was calculated by dividing the number of annual pedestrian fatalities (averaged between 2007-2009) by population (weighted, or multiplied, by share of the population walking to work). (3) All averages are weighted by population except for annual reported pedestrian fatalities.

City	Annual reported pedestrian fatalities (1)	Ped. fatalities Rate per 10K daily peds (1,2)	$\begin{aligned} & \text { \% Of all traffic } \\ & \text { fatalities } \\ & \text { that are } \\ & \text { pedestrians (1) } \end{aligned}$	\% Of pedestrianfatalities (1)	
				Under age 16	Over age 60
Albuquerque	12.3	11.3	26.1\%	0\%	16\%
Arlington, TX	5.0	7.0	18.1\%	7\%	7\%
Atlanta	14.7	6.4	25.4\%	16\%	2\%
Austin	17.7	11.0	29.0\%	2\%	11\%
Baltimore	14.3	3.4	32.3\%	7\%	16\%
Boston	8.3	0.9	34.2\%	0\%	32\%
Charlotte	12.3	8.9	18.5\%	3\%	8\%
Chicago	46.7	2.8	27.3\%	14\%	21\%
Cleveland	4.3	2.3	11.7\%	0\%	23\%
Colorado Springs	1.7	1.7	7.6\%	20\%	20\%
Columbus	12.3	6.0	21.6\%	5\%	3\%
Dallas	33.0	14.4	24.1\%	6\%	10\%
Denver	12.7	5.1	31.4\%	5\%	26\%
Detroit	29.3	9.8	26.9\%	6\%	13\%
El Paso	12.3	9.2	25.5\%	8\%	22\%
Fort Worth	17.3	20.0	25.7\%	8\%	12\%
Fresno	8.3	8.8	24.8\%	12\%	12\%
Honolulu	8.7	2.9	45.6\%	0\%	69\%
Houston	51.3	10.4	23.0\%	8\%	8\%
Indianapolis	10.3	6.0	14.2\%	10\%	16\%
Jacksonville	23.0	18.7	18.1\%	4\%	13\%
Kansas City, MO	11.0	10.6	18.9\%	18\%	6\%
Las Vegas	9.7	8.4	24.0\%	3\%	28\%
Long Beach	10.0	7.2	30.9\%	10\%	17\%
Los Angeles	86.0	6.4	31.9\%	6\%	22\%
Louisville	13.3	10.2	19.5\%	13\%	5\%
Memphis	12.0	8.8	12.1\%	6\%	11\%
Mesa	5.3	6.0	17.0\%	0\%	6\%
Miami	17.0	10.4	34.7\%	6\%	31\%
Milwaukee	11.7	4.2	33.0\%	17\%	26\%
Minneapolis	4.0	1.6	18.2\%	0\%	25\%
Nashville	10.0	9.9	14.8\%	3\%	10\%
New Orleans	12.3	5.9	30.8\%	8\%	5\%
New York	148.7	1.7	53.9\%	6\%	35\%
Oakland	7.3	4.1	22.9\%	18\%	0\%
Oklahoma City	9.3	12.1	13.0\%	14\%	4\%
Omaha	2.0	1.6	9.4\%	0\%	0\%
Philadelphia	32.0	2.5	31.1\%	15\%	28\%
Phoenix	42.3	14.9	25.1\%	7\%	12\%
Portland, OR	7.7	2.6	27.1\%	4\%	22\%
Raleigh	8.7	8.2	28.3\%	15\%	8\%
Sacramento	8.7	5.7	24.8\%	4\%	23\%
San Antonio	24.7	9.1	20.5\%	3\%	16\%
San Diego	21.7	5.8	25.6\%	3\%	29\%
San Francisco	20.7	2.5	48.8\%	3\%	50\%
San Jose	13.7	7.4	29.7\%	5\%	34\%
Seattle	10.0	1.9	40.5\%	0\%	43\%
Tucson	10.3	5.3	20.7\%	6\%	29\%
Tulsa	12.0	13.8	23.4\%	8\%	8\%
Virginia Beach	4.3	4.7	15.5\%	0\%	23\%
Washington, DC	14.0	2.0	39.3\%	7\%	29\%
Mean/Average (3)	18.8	4.0	26.9\%	7\%	21\%
Median	12.0	6.0	24.8\%	6\%	16\%
High	148.7	20.0	53.9\%	20\%	69\%
Low	1.7	0.9	7.6\%	0\%	0\%

State Safety Policies and Funding

State	Percent of traffic fatalities bike/ped (1)	State Highway Safety Funds(2)		Emphasized in state highway safety plan	
		ped	amt. per capita	Bicycling	Walking
Alabama	7.5\%	0.01\%	\$0.00		
Alaska	14.4\%	0.00\%	\$0.00	\checkmark	\checkmark
Arizona	16.3\%	0.00\%	\$0.00		
Arkansas	7.6\%	0.00\%	\$0.00	\checkmark	\checkmark
California	20.5\%	0.52\%	\$0.01	\checkmark	\checkmark
Colorado	11.6\%	0.00\%	\$0.00	\checkmark	\checkmark
Connecticut	14.3\%	0.00\%	\$0.00	\checkmark	\checkmark
Delaware	18.1\%	0.00\%	\$0.00		\checkmark
Florida	21.0\%	4.30\%	\$0.15	\checkmark	\checkmark
Georgia	11.5\%	0.00\%	\$0.00	\checkmark	\checkmark
Hawaii	20.3\%	0.00\%	\$0.00		
Idaho	6.9\%	0.00\%	\$0.00	\checkmark	\checkmark
Illinois	15.1\%	0.00\%	\$0.00	\checkmark	\checkmark
Indiana	8.4\%	0.00\%	\$0.00	\checkmark	\checkmark
lowa	6.1\%	0.00\%	\$0.00		
Kansas	6.2\%	0.00\%	\$0.00		
Kentucky	6.7\%	0.00\%	\$0.00		
Louisiana	13.6\%	0.00\%	\$0.00	\checkmark	\checkmark
Maine	7.6\%	0.00\%	\$0.00	\checkmark	\checkmark
Maryland	21.1\%	0.00\%	\$0.00		\checkmark
Massachusetts	19.2\%	0.00\%	\$0.00	\checkmark	\checkmark
Michigan	14.4\%	0.20\%	\$0.01	\checkmark	\checkmark
Minnesota	9.2\%	0.17\%	\$0.01		
Mississippi	7.9\%	0.00\%	\$0.00		
Missouri	7.9\%	0.00\%	\$0.00	\checkmark	\checkmark
Montana	6.7\%	0.00\%	\$0.00		
Nebraska	3.8\%	0.00\%	\$0.00		
Nevada	17.7\%	0.00\%	\$0.00		\checkmark
New Hampshire	9.0\%	0.00\%	\$0.00	\checkmark	\checkmark
New Jersey	25.6\%	0.21\%	\$0.00	\checkmark	\checkmark
New Mexico	12.9\%	0.00\%	\$0.00	\checkmark	\checkmark
New York	26.9\%	0.00\%	\$0.00		\checkmark
North Carolina	12.3\%	0.52\%	\$0.01	\checkmark	\checkmark
North Dakota	4.8\%	0.00\%	\$0.00		
Ohio	10.0\%	0.05\%	\$0.00	\checkmark	\checkmark
Oklahoma	7.4\%	0.00\%	\$0.00		
Oregon	13.4\%	0.00\%	\$0.00		
Pennsylvania	11.0\%	0.00\%	\$0.00	\checkmark	\checkmark
Rhode Island	19.8\%	0.00\%	\$0.00		
South Carolina	11.9\%	0.00\%	\$0.00	\checkmark	\checkmark
South Dakota	5.3\%	0.00\%	\$0.00		
Tennessee	6.8\%	0.00\%	\$0.00		
Texas	13.4\%	0.00\%	\$0.00	\checkmark	\checkmark
Utah	12.0\%	0.00\%	\$0.00	\checkmark	\checkmark
Vermont	4.7\%	0.00\%	\$0.00		
Virginia	10.2\%	0.56\%	\$0.01	\checkmark	\checkmark
Washington	13.6\%	3.23\%	\$0.04	\checkmark	\checkmark
West Virginia	5.5\%	0.00\%	\$0.00		
Wisconsin	9.1\%	0.00\%	\$0.00		
Wyoming	3.2\%	0.00\%	\$0.00	\checkmark	\checkmark
Mean/Average (3)	13.6\%	0.40\%	\$0.01	Yes	Yes
Median	11.3\%	0.00\%	\$0.00	Yes	Yes
High	26.9\%	4.30\%	\$0.15	\varnothing	\varnothing
Low	3.2\%	0.00\%	\$0.00	\varnothing	\varnothing

[^7][^8]bicyclists killed in traffic in the U.S. decreased by 27%. Pedestrian fatalities fell 24% over the same period. Pedestrian fatalities have experienced a steady decline with 2009 being a record low year for fatalities.

When looking at trends in bicycle and pedestrian fatalities over the last three decades, pedestrian fatalities have steadily declined in every age group. While bicycle fatalities among children under 16 have declined sharply in this time period, fatalities in the 16 and older age group have steadily increased. However, these charts do not take into account the change in number of people who bike or walk in these age groups. For example, the number of children who bicycle or walk to school has decreased 75% between 1966 and 2009. When walking and cycling levels have declined at such rates, then reduced fatalities do not necessarily suggest safer walking and cycling.

Safety Policy

Though almost all of the policies discussed in the following chapter could impact safety, this chapter takes a closer look at state highway safety policy. The federal Highway Safety Improvement Program (HSIP) is a federal funding program that aims to reduce traffic deaths and injuries through infrastructurerelated improvements. States must have a state highway safety plan to be eligible for these funds. Twenty-seven states emphasize bicycling in their state highway safety plan and 31 states emphasize walking. However, the rate at which states obligate safety funds to bicycling and walking is disproportionately low compared to the percent of traffic fatalities these modes represent. While 13.6% of traffic fatalities are bicyclists or pedestrians, just 0.4% of state highway safety funds are directed at these modes. This amounts to just one cent per capita toward bicycle and pedestrian safety from this fund.

Research shows that better policies for bicycling and walking lead to higher levels of bicycling and walking (Pucher and Buehler 2007 and 2008, Pucher et al., 2010). The cities and countries that have invested most heavily in these modes see the greatest share of trips by bicycle and foot (Gotschi and Mills 2009).

For benchmarks in this chapter the Alliance relied on state and city surveys, the National Transportation Enhancements Clearinghouse, the Federal Highway Administration's (FHWA) Fiscal Management Information System (FMIS), League of American Bicyclists' Bicycle Friendly States data, Safe Routes to School National Partnership, National Center for Safe Routes to School, the Rails-to-Trails Conservancy, and the American Public Transportation Association. The Alliance sent surveys to all 50 states and the 51 cities included
in this report. State and city surveys were answered by local advocates and government officials (department of transportation employees, state bicycle and pedestrian coordinators, state Safe Routes to School coordinators, and city planning staff) (for more information on this process, see Chapter 1, page 26). State / city survey data are self-reported by cities/states. Respondents received follow-up only where data appeared inconsistent. Whenever possible, a note is included at the bottom of tables and illustrations noting cities and states that were unable to supply data.

This chapter focuses more heavily on cities since they are where provisions can best be measured. However, not all cities were able to report on bicycling and walking provisions because their agencies have not implemented methods to collect these data and thus have no data available.

Bicycle Station

IIIII III

IIII
 litran

Bicycling and Walking Policies

Strong policies to provide provisions for and promote bicycling and walking can help transform communities into healthier and more livable places. This report considered a number of policies such as complete streets policies, bicycle parking policies, annual spending targets for bicycle and pedestrian projects, published goals to increase bicycling and walking, and published goals to decrease bicycle and pedestrian fatalities.

Planning for Bicycling and Walking

Published Goals

When states or cities publish goals to increase bicycling and walking and decrease crashes, they are making public commitments to progress for which success can be easily measured. Since the 2010 Benchmarking Report, states and cities have improved in this area with several adopting new goals in the last two years. Thirty-four states report they have published goals for increasing both bicycling and walking. Mississippi has a goal to increase walking only. Nevada has a goal to increase bicycling only. This is up from just 16 states that reported goals for increasing bicycling and walking in 2007 and 20 states as of the 2010 Benchmarking Report.

Similarly, more cities have now adopted goals to increase bicycling and walking. Of the cities surveyed, 36 have goals to increase walking and 46 have goals to increase bicycling. Two years ago just 20 and 33 of these cities reported having such goals, respectively.

States and cities are also increasing their commitment to bicycling and walking safety. Forty-one states report having adopted goals to decrease pedestrian fatalities and 38 have goals to decrease bicycle fatalities. Of the cities surveyed, 39 have adopted goals to reduce bicycle fatalities and 31 have adopted goals to decrease pedestrian fatalities. Just 20 of these cities reported having goals to reduce bicycle and pedestrian fatalities in 2007.

Master Plans

Planning is an integral step to creating healthy livable communities. Bicycle and pedestrian master plans set communities' visions for the future and their road maps for achieving their goals. Roughly half of cities and states have adopted master plans for bicycling and walking as of this report. Twentyfour states have bicycle and pedestrian master plans. Hawaii, Minnesota, and Nevada have bicycle master plans only. Rhode Island has a pedestrian master plan only. Colorado is currently developing a bicycle and pedestrian master plan, and Hawaii is currently developing a pedestrian master plan. Twentyone of the cities surveyed have bicycle and pedestrian master plans. Twenty more have bicycle master plans only.

Many states and cities have also adopted master plans for trails and mountain biking. Two-thirds of states report having adopted a trail master plan. Florida, Kansas, New Jersey, and Virginia have mountain bike plans. Florida's mountain bike plan is included in its state trail plan. Twenty-seven cities have trail master plans. Three of these focus on mountain biking. (For links to sample bicycle and pedestrian master plans, see Appendix 5, pages 213 and 214).
(Continued page 70)

Planning for Bicycling and Walking in States

Source: State surveys 2010/2011 Notes: No data received from Montana and New Mexico and therefore these states are not shown on this table; Responses of "unknown" and "NA" were taken to mean "no" for this table. All empty cells should be understood to be a "no" response. (1) In progress. (2) State trail master plan includes mountain bike trails. (3) Bicycle only. (4) Formerly had committee that has since dissolved.

Planning for Bicycling and Walking in Cities

City	Published Goals:				Master Plan Adopted			Advisory Committee	
	To Increase Walking	To Increase Bicycling	Decrease Ped. Fatalities	Decrease Bicycle Fatalities	For bicycling	For walking	$\begin{gathered} \text { For } \\ \text { trails (or } \\ \text { mnt. bikes) } \end{gathered}$	For bicycling	For walking
Albuquerque	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Arlington, TX	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	\checkmark	$\checkmark \star$	\checkmark	\checkmark	\checkmark
Atlanta	\checkmark	\checkmark			\checkmark	\checkmark			
Austin	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Baltimore	$\checkmark \star$	$\checkmark \star$			\checkmark		\checkmark (1)	\checkmark	
Boston		\checkmark		$\checkmark \star$	\checkmark			\checkmark	
Charlotte	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Chicago		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark
Colorado Springs		\checkmark			\checkmark		\checkmark	$\checkmark \star$	
Columbus	$\checkmark \star$	\checkmark	$\checkmark \star$	\checkmark	\checkmark	$\checkmark \star$		\checkmark	\checkmark
Dallas	$\checkmark \star$	\checkmark		$\checkmark \star$	\checkmark		\checkmark	\checkmark	
Denver	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	
El Paso	\checkmark								
Fort Worth		$\checkmark \star$		$\checkmark \star$	$\checkmark \star$				
Fresno	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \star$	$\checkmark \star$	\checkmark (1)	\checkmark	\checkmark
Honolulu		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
Houston		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Jacksonville	\checkmark								
Kansas City, MO	\checkmark								
Las Vegas	\checkmark								
Long Beach	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Los Angeles	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	\checkmark			\checkmark	\checkmark
Louisville	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
Memphis	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$			\checkmark		
Mesa		\checkmark	\checkmark	\checkmark				(2)	
Miami		\checkmark		\checkmark	$\checkmark \star$		\checkmark	\checkmark	
Milwaukee		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark
Minneapolis	$\checkmark \star$	\checkmark	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	\checkmark	\checkmark	\checkmark
Nashville	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
New Orleans			$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$			
New York	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Oakland	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Oklahoma City		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Omaha	$\checkmark \star$	$\checkmark \star$					\checkmark	\checkmark	\checkmark
Philadelphia	$\checkmark \star$	$\checkmark \star$	\checkmark	\checkmark	\checkmark	$\checkmark \star$	\checkmark (1)		
Phoenix	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Portland, OR	\checkmark								
Raleigh	$\checkmark \star$	\checkmark	$\checkmark \star$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Sacramento	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
San Antonio		$\checkmark \star$			$\checkmark \star$			$\checkmark \star$	$\checkmark \star$
San Diego	\checkmark	\checkmark		*	\checkmark				
San Francisco	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
San Jose	$\checkmark \star$	$\checkmark \star$	\checkmark						
Seattle	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Tucson	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark
Tulsa	\checkmark	\checkmark					\checkmark	(2)	(2)
Virginia Beach	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \star$	\checkmark	\checkmark	\checkmark
Washington, DC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
\qquad	36	47	31	39	41	21	27	36	26
Mean/Average	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes

[^9]
Advisory Committees

In many states and cities, bicycle and pedestrian advisory committees assist with the planning, development, prioritizing, and implementation of bicycling and walking programs and facilities. These committees are typically comprised of volunteer community stakeholders such as bicycle and running club leaders, bicycle shop owners, advocacy leaders, and concerned citizens. Groups typically meet monthly or quarterly to review and make recommendations to city or state staff and planners about facilities, programs, and issues relating to bicycling and walking in their state / community. Twenty-six cities and 24 states that were surveyed report having a bicycle and pedestrian advisory committee. Ten cities have bicycle advisory committees only as do the states of Kentucky and North Carolina.

Complete Streets Policies

The bicycle and pedestrian advocacy movement and its partners for transit and disabled rights have adopted the term "complete streets" because it accurately frames the discussion to show that a street is not complete unless all modes of transport are provided for. A complete street provides safe access for pedestrians, bicyclists, children, the elderly, disabled people, transit users, and motorists. Complete streets policies require that all streets are designed and built to provide safe access for all potential users. These policies ensure that provisions such as sidewalks, curb cuts, bike lanes, traffic calming, and inviting crossings are included in all road projects and not as an optional add-on. According to the National Complete Streets Coalition (as of September 2011), 26 states and 19 of the 51 cities in this report have adopted local complete

Before: Incomplete Street

After: Complete Street

Complete Streets Policies

Source: National Complete Streets Coalition, September 2011 Note: Only cities out of the 51 cities included in this report are included on this map. As of August 2011 there are 283 local jurisdictions with written policies-see www.CompleteStreets.org for details. California has an existing Complete Streets policy from 2001, but new policies were also adopted in 2008 and 2010.
streets policies. This is up from 2007 when just 10 states and 8 of the 51 cities had adopted complete streets policies. In total, there were 283 local complete streets policies in the U.S. as of August 2011. (For links to complete streets resources and model policies, see Appendix 5, page 214.)

Bicycle Level of Service

Level of Service (LOS) is a rating system used by transportation engineers, planners, and authorities to evaluate the speed, convenience, and comfort of roadway facilities. LOS most often assigns a letter grade to roadways, making the rating easy to understand. LOS has been used traditionally in highway planning, and the values assigned to roads can affect funding and other policy decisions. Although traditional LOS models have not included ratings for bicycling and walking, multimodal LOS models
are becoming more common in some places. According to data from the League of American Bicyclists, 17 states use the bicycle LOS rating to assess roads.

Bicycle Parking Requirements

Over 1.5 million bicycles are stolen in the United States each year (www. stolenbicycleregistry.com/links.php). In a 2008 survey of roughly 1,800 San Francisco bicyclists, the number one reason bicyclists cited why they don't bicycle more was fear of theft (Report Card on Bicycling: San Francisco 2008).

A lack of safe places to park a bicycle is a barrier to increasing bicycling (Hunt and Abraham 2007). Many cities have taken steps to overcome this barrier by requiring businesses and new developments, parking garages, and public events to include bicycle (Continued page 74)

State Policies

Over $\mathbf{1} / \mathbf{2}$ of states have now adopted a complete streets policy.

City Policies

City	Driver Enforcement		Car parking requirements		Bike parking requirements			Complete streets policy (1)
	For not yielding?	If yes, what is fine?	Min. \# of spaces for new building	Max \# of spaces for new building	Bike parking in buildings/ garages	Bike parking in new building	Bike parking at public events	
Albuquerque	$\checkmark \star$	*	$\checkmark \star$		$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	
Arlington, TX	$\checkmark \star$	*	\checkmark	$\checkmark \star$		\checkmark		
Atlanta	\checkmark	(3)	\checkmark	\checkmark	\checkmark	\checkmark		
Austin	\checkmark	*	\checkmark		\checkmark	\checkmark		$\checkmark \star$
Baltimore	$\checkmark \star$	\$57	\checkmark		$\checkmark \star$	\checkmark		$\checkmark \star$
Boston	$\checkmark \star$	*	\checkmark			$\checkmark \star$		
Charlotte	$\checkmark \star$	*	\checkmark		\checkmark	\checkmark		\checkmark
Chicago	\checkmark	*	$\checkmark \star$		$\checkmark \star$	\checkmark		\checkmark
Colorado Springs	$\checkmark \star$	*	\checkmark					\checkmark
Columbus	*	\varnothing	\checkmark	\checkmark	$\checkmark \star$	$\checkmark \star$		\checkmark
Dallas	\checkmark	\$175 (4)	\checkmark					
Denver		\varnothing	\checkmark		$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$
Detroit(2)	\checkmark	\varnothing	\checkmark					
El Paso	$\checkmark \star$	*	$\checkmark \star$		$\checkmark \star$	$\checkmark \star$		
Fort Worth		\varnothing	\checkmark		$\checkmark \star$	$\checkmark \star$		
Fresno	\checkmark	\$300	\checkmark		$\checkmark \star$	\checkmark	$\checkmark \star$	
Honolulu	\checkmark	\$97	\checkmark					\checkmark
Houston	\checkmark	*	\checkmark	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$		
Indianapolis(2)		\varnothing						
Jacksonville	$\checkmark \star$	*	$\checkmark \star$					
Kansas City, MO	\checkmark	\$60	\checkmark	\checkmark	\checkmark	\checkmark		
Las Vegas	\checkmark	\$300	\checkmark					$\checkmark \star$
Long Beach	\checkmark	\$159	\checkmark					
Los Angeles	$\checkmark \star$	\$175	\checkmark			\checkmark		
Louisville	$\checkmark \star$	\$60	\checkmark	\checkmark	$\checkmark \star$	\checkmark		\checkmark
Memphis	\checkmark	*	$\checkmark \star$			$\checkmark \star$		
Mesa	\checkmark	*	\checkmark	$\checkmark \star$	$\checkmark \star$	\checkmark		
Miami	$\checkmark \star$	*	\checkmark					\checkmark
Milwaukee	\checkmark	*	\checkmark		\checkmark	\checkmark		
Minneapolis	\checkmark	\$178	\checkmark	\checkmark	\checkmark	\checkmark		
Nashville	\checkmark	\$50	\checkmark			$\checkmark \star$	\checkmark	$\checkmark \star$
New Orleans		\varnothing	\checkmark			$\checkmark \star$		
New York	$\checkmark \star$		\checkmark	$\checkmark \star$	\checkmark	$\checkmark \star$		\checkmark
Oakland	$\checkmark \star$	\$201	\checkmark		\checkmark	\checkmark	\checkmark	
Oklahoma City	$\checkmark \star$	\$94	\checkmark					
Omaha	$\checkmark \star$	\$73	$\checkmark \star$			$\checkmark \star$		
Philadelphia		\varnothing	\checkmark	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$		\checkmark
Phoenix	\checkmark	*	$\checkmark \star$					
Portland, OR	\checkmark	\$287	\checkmark		\checkmark	\checkmark		
Raleigh	\checkmark	*	\checkmark			\checkmark		
Sacramento	$\checkmark \star$	*	$\checkmark \star$			$\checkmark \star$		\checkmark
San Antonio	$\checkmark \star$	\$200	$\checkmark \star$			$\checkmark \star$		
San Diego	$\checkmark \star$	\$200	\checkmark	$\checkmark \star$	\checkmark	$\checkmark \star$		\checkmark
San Francisco	$\checkmark \star$	\$149		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
San Jose	\checkmark	*	\checkmark		$\checkmark \star$	\checkmark	$\checkmark \star$	
Seattle	$\checkmark \star$	\$124	$\checkmark \star$	$\checkmark \star$		$\checkmark \star$		\checkmark
Tucson	\checkmark	\$115	\checkmark		\checkmark	\checkmark	\checkmark	
Tulsa	\checkmark	*	\checkmark					
Virginia Beach	$\checkmark \star$	\$35	\checkmark	$\checkmark \star$	$\checkmark \star$	\checkmark		
Washington, DC	\checkmark	\$250	\checkmark		\checkmark	\checkmark		$\checkmark \star$
\# of cifies responding ves	43	ø	47	15	28	39	9	19
Mean/Average	Yes	\$152	Yes	No	Yes	Yes	No	No

Sources: City surveys, NCSC September 2011 Notes: Answers marked as "unknown" on surveys were taken to mean "no." Cleveland did not provide data for the 2008/2009 or 2010/2011 surveys and is not included in this table. (1) Complete streets data from the National Complete Streets Coalition. (2) City did not respond to 2010/2011 survey; data from the 2008/2009 city survey. (3) varies. (4) answered "\$150-200."

Legend: (this page and previous)
$\checkmark=$ Yes/has legislation or policy
\star = New policy since 2010 Benchmarking Report $\varnothing=$ Not applicable

* $=$ Officials could not access data
parking. Of the cities surveyed for this report, 76% (39 cities) require bicycle parking in new buildings. This is a 70% increase from 2 years ago when just 23 cities reported having this policy. Twenty-eight cities report that they require bicycle parking in buildings/ garages-up from just 15 cities 2 years ago. Just nine cities require secure or valet bicycle parking at public events.

A 2002 comparison of bicycle parking requirements in 145 jurisdictions reveals that these policies typically require bicycle parking between 2% and 20% of car parking (Comparison of Bike Parking Policies). Some policies are triggered by minimum requirements such as the square footage of a building, the number of employees a business has, or the number of car parking spaces. In these cases, if the minimum is not met (such as a business having under 25 employees), a business is not required to install any bicycle parking.

Car Parking Requirements

The Alliance also surveyed cities on policies requiring a minimum and/ or maximum number of car parking spaces for new buildings. Ninety-two percent of responding cities (47 cities) reported having minimum car parking requirements. By masking the true cost of land and parking space, these policies can often negatively affect land-use development that promotes bicycling and walking and lead to sprawl (Shoup 2005). On the flip side, 15 cities (up from six as of the 2010 report) reported having policies that set a maximum number of car parking spaces for new buildings. These progressive policies require more dense development and land-use practices that can encourage
safer and more friendly environments for bicyclists and pedestrians.

Driver Enforcement

Enforcement is one of the five Es for creating a bicycle and pedestrian friendly community. (Engineering, Education, Encouragement, and Evaluation are the other four.) Enforcement generally includes laws protecting both bicyclists and pedestrians and the enforcement of these laws. Although it is commendable to have laws that protect bicyclists, pedestrians, and other road users, these laws are less effective if not enforced. Whether it's ticketing speeding motorists or reminding bicyclists to stop at traffic lights, enforcement is critical to ensuring that safety rules keep road users safe.

For this report the Alliance collected data on a number of laws and policies. Relating to driver enforcement, surveys asked cities if they cite drivers for not yielding to bicyclists and pedestrians. Forty-three of the cities surveyed report that their city fines motorists for not yielding to bicyclists and pedestrians when nonmotorized users have the right of way. Of the cities that do enforce not yielding to bicycles and pedestrians, fines range from $\$ 35$ to $\$ 300$. The average fine for motorists is $\$ 152$.

Safe Routes to School Policies

 Through the 2005 federal transportation act, $\$ 978$ million was provided to fund Safe Routes to School programs in all 50 states and the District of Columbia. As part of this legislation, each state was mandated to hire a full-time Safe Routes to School Coordinator. As of March 2011 all states have a full-time Safe Routesto School coordinator in place. Three of these states (Illinois, Maine, and South Dakota) have interim coordinators.

States were asked what percentage of their schools participate in Safe Routes to School programs. According to this survey, on average, 14% of public schools are engaged in a Safe Routes to School program. Nevada has the highest participation rate with 39% of schools involved with Safe Routes programs. Oklahoma reported the lowest participation rate with just 1% of schools involved with Safe Routes.

Funding SRTS

The Alliance asked states if they use any additional funding sources for SRTS besides federal SRTS dollars. Eighteen states reported using additional funding sources for SRTS. Among the other funding sources used by states are state funds, Transportation Enhancement, state license plate sales, and private foundation funding.

School Siting Policies

The Alliance also asked cities and states whether they have a policy setting minimum acreage requirements for school siting. These requirements can often lead to sprawl by forcing new schools to be built far away from urban and suburban centers, and create poor conditions for bicycling and walking to school (McDonald 2007). These same conditions may negatively influence participation in after school and weekend activities at the school grounds (such as science club, scouts, arts and cultural enrichment, sports, etc.). Twen-ty-five states have minimum acreage policies for school siting. These policies vary but on average require a minimum

Eighteen states provide additional funding for Safe Routes to School beyond federal funding.
of 10 acres for elementary schools, 20 acres for middle schools, and 30 acres for high schools, plus 1 acre for every 100 students. Thirty cities reported having a policy that places children in schools for other reasons besides prox(Continued page 78)

State Safe Routes to School Policies

States	Full-time SRIS coordinator?	Standard SRTS curriculum for all schools	Training for all instructors on curriculum	Percentage of state's schools participating in SRTS program?	Policy requiring minimum acreage for school siting? (1)	State provides additional funding above and beyond fed SRTS funds?
Alabama	\checkmark		\checkmark		\checkmark	
Alaska	\checkmark	\checkmark		*	\checkmark	
Arizona	\checkmark	\checkmark	\checkmark	12\%	\checkmark	
Arkansas	\checkmark			*		
California	\checkmark			25\%	\checkmark	\checkmark
Colorado	\checkmark	\checkmark	\checkmark	*		
Connecticut	\checkmark			5\%	\checkmark	*
Delaware	\checkmark	\checkmark	\checkmark	20\%	\checkmark	\checkmark
Florida	\checkmark	\checkmark	\checkmark	30\%		
Georgia	\checkmark	\checkmark	\checkmark	14\%	\checkmark	
Hawaii	\checkmark			17\%	\checkmark	
Idaho	\checkmark			13\%	\checkmark	\checkmark
Illinois	\checkmark (2)			10\%		$\checkmark \star$
Indiana	\checkmark			25\%	\checkmark	$\checkmark \star$
lowa	\checkmark	\checkmark	\checkmark	18\%		
Kansas	\checkmark			8\%		\checkmark
Kentucky	\checkmark	\checkmark		13\%	\checkmark	\checkmark
Louisiana	\checkmark			*		
Maine	\checkmark (2)	\checkmark	\checkmark	25\%	\checkmark	\checkmark
Maryland	\checkmark	\checkmark	\checkmark	8\%		$\checkmark \star$
Massachusetts	\checkmark	\checkmark	\checkmark	26\%		
Michigan	\checkmark	\checkmark	\checkmark	14\%		$\checkmark \star$
Minnesota	\checkmark			5\%		$\checkmark \star$
Mississippi	\checkmark	\checkmark	\checkmark	10\%	\checkmark	
Missouri	\checkmark	\checkmark		13\%	\checkmark	$\checkmark \star$
Montana	\checkmark			*		*
Nebraska	\checkmark			*		
Nevada	\checkmark		\checkmark	39\%		\checkmark
New Hampshire	\checkmark	\checkmark	\checkmark	5\%	\checkmark	
New Jersey	\checkmark	\checkmark	\checkmark	*		\checkmark
New Mexico	\checkmark			*		*
New York	\checkmark	\checkmark		*	\checkmark	
North Carolina	\checkmark			7\%	\checkmark	
North Dakota	\checkmark			5\%		\checkmark
Ohio	\checkmark			*	\checkmark	
Oklahoma	\checkmark	\checkmark		1\%	\checkmark	\checkmark
Oregon	\checkmark	\checkmark	\checkmark	12\%		
Pennsylvania	\checkmark			*		
Rhode Island	\checkmark			16\%	\checkmark	
South Carolina	\checkmark			14\%		
South Dakota	\checkmark (2)			*		
Tennessee	\checkmark			10\%		
Texas	\checkmark	\checkmark	\checkmark	16\%		\checkmark
Utah	\checkmark	\checkmark	\checkmark	15\%	\checkmark	
Vermont	\checkmark	\checkmark	\checkmark	20\%		
Virginia	\checkmark			*	\checkmark	
Washington	\checkmark	\checkmark	\checkmark	5\%	\checkmark	\checkmark
West Virginia	\checkmark			10\%	\checkmark	
Wisconsin	\checkmark	\checkmark	\checkmark	14\%		
Wyoming	\checkmark	\checkmark	\checkmark	*	\checkmark	
\# of states responding yes	46	25	22	\varnothing	25	18
Mean/Average	Yes	\varnothing	No	14\%	\varnothing	No

Source: State surveys, 2010/2011, LAB 2011, SRTSNP September 2011, Council on Educational Facility Planners International 2003 Brief on Educational Facilities Issues Notes: Legend next page. (1) Policies requiring minimum acreage for school siting often promote sprawl by forcing new schools to locate away from denser population centers resulting in schools that are not walkable and bikeable. (2) Interim coordinator.

Safe Routes to School in Cities

Cities	Total number of students (K-12) (1)	\# of bike parking spaces at public schools	\# of bike parking spaces per 1,000 students	Existence of policy:	
				requiring minimum acreage for school siting (2)	placing children in schools for any reason other than proximity to home
Albuquerque	*	*	*	*	*
Arlington, TX	62,500	*	*	\checkmark	\checkmark
Atlanta	*	*	*	\checkmark	
Austin	*	*	*	*	*
Baltimore	*	*	*	*	*
Boston	55,000	*	*	*	\checkmark
Charlotte	*	1,700	*	\checkmark	\checkmark
Chicago	384,909	*	*		\checkmark
Colorado Springs	*	*	*	\checkmark	*
Columbus	49,861	*	*	\checkmark	\checkmark
Dallas	107,000	900	8	\checkmark	\checkmark
Denver	79,423	644	8	*	\checkmark
El Paso	*	*	*	*	*
Fort Worth	120,000	*	*		
Fresno	220,000	150	1	\checkmark	\checkmark
Honolulu	*	*	*	*	*
Houston	*	*	*	*	*
Jacksonville	93,346	5,000	54	\checkmark	\checkmark
Kansas City, MO	32,497	270	8	\checkmark	\checkmark
Las Vegas	*	*	*		\checkmark
Long Beach	88,186	*	*	*	*
Los Angeles	578,524	*	*		\checkmark
Louisville	99,819	*	*	\checkmark	\checkmark
Memphis	*	*	*		
Mesa	65,500	5,700	87		
Miami	30,565	*	*		\checkmark
Milwaukee	87,000	*	*		\checkmark
Minneapolis	35,453	1,656	47	*	\checkmark
Nashville	73,653	*	*	\checkmark	\checkmark
New Orleans	38,000	*	*		\checkmark
New York	873,512	*	*		\checkmark
Oakland	46,900	*	*		\checkmark
Oklahoma City	*	*	*	*	*
Omaha	75,000	475	6		\checkmark
Philadelphia	154,500	*	*		\checkmark
Phoenix	285,700	16,000	56		
Portland, OR	*	*	*		\checkmark
Raleigh	143,710	100	1	\checkmark	\checkmark
Sacramento	*	*	*	*	*
San Antonio	*	*	*	*	\checkmark
San Diego	125,571	*	*	\checkmark	\checkmark
San Francisco	*	100	*		\checkmark
San Jose	163,000	*	*		
Seattle	46,522	1,200	26	\checkmark	\checkmark
Tucson	*	*	*	*	*
Tulsa	*	*	*	*	\checkmark
Virginia Beach	69,365	*	*	\checkmark	\checkmark
Washington, DC	72,327	350	5		
Mean/Average	145,245	2,446	26	No	Yes
Median	83,212	772	8	No	Yes
High	873,512	16,000	87	\varnothing	\varnothing
Low	30,565	100	1	\varnothing	\varnothing

Legend (this page and previous):
$\checkmark=$ Yes/has policy
$\star=$ New policy since 2010
Benchmarking Report
\varnothing = Not applicable

* $=$ Officials could not access data

Source: City surveys, 2010/2011 Notes: Cleveland, Detroit, and Indianapolis did not respond to requests for data and are not included in this table. (1) Number refers to all public school students, not number of SRTS participants. (2) Policies requiring minimum acreage for school siting often promote sprawl by forcing new schools to locate away from denser population centers resulting in schools that are not walkable or bikeable.

imity to their homes. Desegregation busing, the practice of assigning and busing students to schools to diversify student demographics, is one common policy that forces children to attend schools outside of their neighborhood consequently making walking and biking to school more difficult.

Bike Parking at Schools

The Alliance also asked cities how many bike parking spaces were at public schools. Cities averaged 26 school bike parking spaces per 1,000 students. Phoenix reported 16,000 bicycle parking spaces at schools-more than any other city. Mesa, AZ, had the highest rate of bicycle parking at schools with 87 spots per 1,000 students.

Spending Targets

Spending targets are goals set by states and cities for how much money, or what
percentage of transportation spending, will be allocated to bicycling and walking. Most states and cities report that they do not have spending targets for bicycling and walking. Just 11 states (Connecticut, Hawaii, Iowa, Maine, Michigan, North Carolina, Oklahoma, Oregon, South Carolina, Virginia, and Washington) report having spending targets-up from eight states as of the 2010 report. Thirteen cities (Albuquerque, Austin, Cleveland, Colorado Springs, Columbus, Fresno, Honolulu, Las Vegas, Louisville, Nashville, Phoenix, Portland, and Washington, DC) report having spending targets-up from seven cities as of the 2010 Benchmarking Report. Some spending targets are based on percentage of transportation spending (Hawaii 2%, Rhode Island 4%). Columbus's target is over a 20 -year period. Other states and cities set dollar amounts as annual spending targets.
(Continued page 81)

State Bicycle Policies

Mandatory Bike Lane Use Laws

Mandatory Sidepath Use Law

Bicycles Can Legally Ride

Legend:

$\square=$ Policy in existence in this state
= State does not have this policy

Mandatory Youth Helmet Laws

State Legislation Relating to Bicycling

State	Legal 2 abreast riding for bicycles	3-foot passing distance for cars	Legally signal w/ right hand	Text messaging banned	Handheld cell phones banned	Bicyclist allowed full use of lane in presence of:		Mandatory youth helmet policy	Age?
						Sidepath	Bike lane		
Alabama	\checkmark						\checkmark	\checkmark	<6
Alaska	\checkmark			\checkmark		\checkmark	\checkmark		\varnothing
Arizona	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\varnothing
Arkansas		\checkmark		\checkmark	(1)	\checkmark	\checkmark		\varnothing
California	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	< 18
Colorado	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
Connecticut	\checkmark	< 16							
Delaware	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	< 18
Florida	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	<16
Georgia	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	< 16
Hawaii					(2)	\checkmark	\checkmark	\checkmark	<17
Idaho	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
Illinois	\checkmark	\checkmark	\checkmark	\checkmark	(3)	\checkmark	\checkmark		\varnothing
Indiana	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
lowa				\checkmark		\checkmark	\checkmark		\varnothing
Kansas	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\varnothing
Kentucky	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\varnothing
Louisiana	\checkmark	\checkmark	\checkmark	\checkmark	(4)	\checkmark	\checkmark	\checkmark	< 12
Maine	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	< 16
Maryland	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	< 16
Massachusetts	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	< 17
Michigan	\checkmark			\checkmark		\checkmark	\checkmark		\varnothing
Minnesota	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
Mississippi	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\varnothing
Missouri	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
Montana	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
Nebraska			\checkmark	\checkmark			\checkmark		\varnothing
Nevada	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\varnothing
New Hampshire	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	< 16
New Jersey	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<17
New Mexico	\checkmark				(5)	\checkmark	\checkmark	\checkmark	<18
New York	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	<14
North Carolina	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	< 16
North Dakota	\checkmark		\checkmark	\checkmark			\checkmark		\varnothing
Ohio	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
Oklahoma	\checkmark	\checkmark			(4)		\checkmark		\varnothing
Oregon	\checkmark	\checkmark (7)	\checkmark	\checkmark	\checkmark			\checkmark	< 16
Pennsylvania	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	0-11
Rhode Island	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	< 15
South Carolina	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
South Dakota						\checkmark	\checkmark		\varnothing
Tennessee	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	< 16
Texas	\checkmark		\checkmark			\checkmark	\checkmark		\varnothing
Utah	\checkmark	\checkmark	\checkmark	\checkmark	(6)	\checkmark	\checkmark		\varnothing
Vermont	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
Virginia	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
Washington	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\varnothing
West Virginia	\checkmark							\checkmark	<15
Wisconsin	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\varnothing
Wyoming	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\varnothing
\# of states responding yes	45	21	37	34	9	42	42	21	\varnothing
Mean/Average	Yes	No	Yes	Yes	No	Yes	Yes	No	<16

Sources: LAB 2011, Governors Highway Safety Association 2011 Notes: (1) Has handheld cell phone ban for $18-20$ yrs old. (2) Hawaii does not have a state law banning the use of handheld cell phones. However, all of the state's counties have enacted distracted driving ordinances. (3) Illinois bans the use of handheld cell phones while driving in a school zone

Legend:

$\checkmark=$ Yes/has legislation $\varnothing=$ not applicable or in a highway construction zone. (4) Yes with learner or intermediate license. (5) Yes in state vehicles. (6) Utah's law defines careless driving as committing a moving violation (other than speeding) while distracted by use of a handheld cell phone or other activities not related to driving. (7) Oregon's safe passing law does not specify 3 -feet, but defines a safe distance as: "distance that is sufficient to prevent contact with the person operating the bicycle if the person were to fall into the driver's lane of traffic vehicle."

State Legislation

Can Bicyclists Legally Ride Two

 Abreast?Most states have laws that allow bicyclists to ride side by side or "two abreast" as long as they are not impeding traffic. Riding two abreast is often preferred for bicyclists riding with a companion and can make bicycling a more enjoyable experience, like sitting beside a friend in a bus, train, or car. Forty-five states have legislation allowing bicyclists to ride two abreast. Hawaii, Iowa, Montana, Nebraska, and South Dakota are the only states where there is no legislation allowing bicyclists to ride side by side.

Safe Passing Laws

In recent years many states have successfully pursued legislation that requires motorists to pass bicyclists at a set "safe" distance. These "Safe Passing" or "3-Feet" laws, as they're often called, are primarily aimed at educating motorists how to safely pass bicyclists. Motorists may believe that just avoiding contact with bicyclists is all that is required when passing. Many motorists are unaware of the dangers of passing a bicyclist too closely which may lead to the bicyclist being hit or startled resulting in a crash. The other benefit of safe passing laws is to give police the authority to charge drivers who hit cyclists. If a motorist hits a cyclist, by definition he or she failed to give three feet. Twenty-one states now have safe passing laws on the books (up from 14 as of the 2010 Benchmarking Report).

Distracted Driving Laws

Distracted driving has received increased attention in recent years, especially as cell phones and texting have become more prominent. In 2009, distracted driving was responsible for
roughly 16% of traffic fatalities (nearly 5,500 victims) (USDOT 2011). Recent research has shown that strong laws with strong enforcement can significantly reduce distracted driving and save lives (Cosgrove et al., 2011). As of this report, only nine states ban handheld cell phone use by all motorists. Thirty-four states ban text messaging while driving.

Mandatory Bike Lane and Sidepath Use Laws

Although most state laws define bicycles as vehicles with the same rights and responsibilities as other vehicles on roadways, some states and municipalities have laws that prohibit bicyclists from full use of roadways when a bike lane or adjacent pathway is present. These "mandatory bike lane use" and "mandatory sidepath" laws can make it illegal for bicyclists to navigate traffic with the best vehicular tactics (such as merging left to avoid an obstruction, merging into the left lane to turn left, or not riding to the right of traffic in a turn lane) and restrict bicyclists' access to businesses or residences.

Most states, however, do allow bicyclists full use of the lane in traffic. Forty-two states allow the full use of the lane by bicyclists when a bike lane is present, and 42 allow use of the full lane in the presence of a sidepath. States that have mandatory bike lane use laws include California, Delaware, Florida, Kentucky, Maryland, New York, Oregon, and West Virginia. States that have mandatory sidepath laws include Alabama, Georgia, Kansas, Nebraska, North Dakota, Oklahoma, Oregon, and West Virginia.

Mandatory Helmet Laws

Although there is no federal law in the United States requiring helmet use for
bicyclists, starting in 1987, states and local jurisdictions began passing their own laws requiring helmet use. Twen-ty-one states report having a mandatory youth helmet policy. Typically these policies apply to youth under age 16. Mandatory helmet laws are controversial among bicycling proponents. For more information on these laws and the controversy around them, see Appendix 5 , page 215.

Funding Bicycling and Walking

The most accurate uniform data on federal funding for bicycling and walking comes from the FHWA's FMIS accounting system. The funding data in this report (unless otherwise noted) depict a 5-year average of federal funds obligated to projects, and are not necessarily the actual amount spent in these years. Tables on pages $86-87$ show both the federal dollars per capita for each state and city, and the percent of federal transportation dollars to bicycling and walking in each state and city.

The reliability of federal funding data is limited by the way various states report transportation spending to the FHWA. It is likely that bicycle and pedestrian spending is underreported when a larger road project has a bicycle or pedestrian component. Often, the entire project is coded as a highway project and therefore that state is not credited with spending the funds on bicycling and walking. This is becoming more of an issue for tracking and comparing spending by states with the rise in complete streets policies. With more states including bicycling and walking in all projects, it is increasingly difficult

> Only 1.6\% of federal transportation dollars are spent on bicycling and walking.

Percent of Federal Transportation Dollars to Bicycling and Walking

Source: FHWA FMIS 2006-2010 Note: Data are based on funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years.

Source: FHWA FMIS 2010 Abbreviations: CMAQ = Congestion Mitigation and Air Quality Improvement Program; HSIP = Highway Safety Improvement Program; HPP = High Priority Projects; NTPP = Nonmotorized Transportation Pilot Program; Other STP = Surface Transportation Program (STP except Transportation Enhancement). Note: Data are based on funds obligated in 2010 and do not necessarily represent funds that were spent in this year. Figures are rounded to nearest whole percentage point and do not include American Recovery and Reinvestment Act funds.

Percent of Transportation Dollars to Bike/Ped

Source: FHWA FMIS 2006-2010 Note: Data are based on a 5 -year average of funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years. Please note that this chart only reports state obligations of federal funding for bicycle and pedestrian projects. As states may utilize other sources of funding for bicycle and pedestrian programs as well, it is important not to assume that federal funding is the only source of funding for bicycle and pedestrian programs in any particular state. See disclaimer regarding differences in funding reporting on page 82 of this report.

According to data from the FHWA, Delaware and Washington spent the highest percentage on bicycling and walking among states- 3.1% and 2.7%, respectively. Maryland, Oklahoma, and Virginia spent the lowest percentage on bicycle and pedestrian projects among states.

> Delaware spends the greatest percentage of transportation dollars on bicycling and walking projects.
to track if states do not code the bike/ ped portions of the project. When asked how their state reports projects, 29 states responded that they report standalone bicycle and pedestrian projects. Twenty-eight states responded that they report facilities that are part of larger projects. Five states did not respond or could not access this information.

Also, this report only includes obligations of federal funding for bicycle and pedestrian projects. As states and cities may utilize other sources of funding for bicycle and pedestrian programs as well, it is important not to assume that federal funding amounts included in this report are the only funding for bicycle and pedestrian programs in any particular state or city.

The variation in federal funding sources to bicycle and pedestrian projects is
relatively small, with the Transportation Enhancement (TE) program typically responsible for roughly half of all bike/ ped obligations. (The American Recovery and Reinvestment Act, a temporary funding program, was the leading funding source for bicycle and pedestrian projects in FY 2010.) More than 50 additional federal funding programs have been used for bicycle and pedestrian projects, most at relatively small amounts. Overall, states spend just 1.6% of their federal transportation dollars on bike / ped projects (based on the 5 -year funding period from 2006-2010). This amounts to just $\$ 2.17$ per capita for bicycling and walking each year. The variation in per capita funding and the percentage of transportation dollars spent on bicycle and pedestrian projects are great among both cities and states. This fact indicates that states and local (Continued page 88)

Trend in Bicycle and Pedestrian Projects and Spending 1992-2010

Source: FHWA FMIS 1992-2010 Note: Values are nominal dollars. The American Recovery and Reinvestment Act of 2009 contributed $\$ 425$ million to bicycling and walking TE projects as of June 2009 (America Bikes) and is responsible, in part, for the spike in projects and spending in 2009 and 2010.

Composition of Federal Funding for Bike/ Ped Provisions in Largest U.S. Cities

Legend:

= Transportation Enhancement/Surface Transportation Program		$=$ National Transportation Pilot Program	
= Congestion Mitigation and Air Quality Improvement Program		$=$ High Priority Projects	
= Safe Routes to School		$=$ Recreational Trails Program	
	$=$ Highway Safety Improvement Program		$=$ Other

Source: FHWA FMIS 2006-2010 Note: Data are based on funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years. This illustration does not include funding from the American Recovery and Reinvestment Act. In some cases, deobligated funds during the 5 -year period cause negative values to occur. Deobligated funds were not included for the purpose of this illustration. Mesa is not shown because only deobligated funds from the categories included were reported.

Bike/Ped Funding in States

State	State spending farget for bicycling and walking?		Federal transportation funds (5-year average)				How state reports obligated funds to FMIS (6)	
	$\checkmark=$ Yes (6)	Amount	Obligated to bike/ped projects/yr.	$\begin{gathered} \text { Per } \\ \text { capita } \end{gathered}$	\% of federal transportation \$ to bike/ped	\% of TE funds to bike/ped	Stand-alone bike/ped projects?	Include facilities part of larger projects?
Alabama		\varnothing	\$10,917,294	\$2.32	1.3\%	72\%	\checkmark	
Alaska		\varnothing	\$7,663,661	\$10.97	1.8\%	62\%		\checkmark
Arizona		\varnothing	\$17,073,366	\$2.59	2.3\%	31\%	\checkmark	
Arkansas		\varnothing	\$3,565,034	\$1.23	0.7\%	21\%	\checkmark	
California (7)		\varnothing	\$65,053,542	\$1.76	1.7\%	44\%		\checkmark
Colorado		\varnothing	\$10,807,434	\$2.15	1.8\%	72\%	\checkmark	
Connecticut	$\checkmark \star$	1\%	\$6,076,840	\$1.73	1.1\%	49\%		\checkmark
Delaware		\varnothing	\$5,440,744	\$6.15	3.1\%	63\%		\checkmark
Florida		\varnothing	\$48,156,272	\$2.60	2.2\%	47\%	\checkmark	\checkmark
Georgia		\varnothing	\$24,573,747	\$2.50	1.8\%	81\%	*	*
Hawaii	\checkmark	2\% (1)	\$2,460,733	\$1.90	1.2\%	79\%	\checkmark	
Idaho		\varnothing	\$4,434,702	\$2.87	1.4\%	57\%	\checkmark	
Illinois		\varnothing	\$13,169,732	\$1.02	0.9\%	30\%	\checkmark	
Indiana		\varnothing	\$23,000,937	\$3.58	2.2\%	48\%	\checkmark	\checkmark
lowa	$\checkmark \star$	*	\$12,325,209	\$4.10	2.4\%	54\%	\checkmark	\checkmark
Kansas		\varnothing	\$6,327,800	\$2.24	1.3\%	36\%		\checkmark
Kentucky		\varnothing	\$18,791,311	\$4.36	2.7\%	43\%		\checkmark
Louisiana		\varnothing	\$10,263,292	\$2.28	1.0\%	66\%		\checkmark
Maine	\checkmark	\$6 MM	\$3,524,070	\$2.67	1.7\%	47\%	\checkmark	
Maryland		\varnothing	\$2,599,141	\$0.46	0.4\%	21\%	\checkmark	\checkmark
Massachusetts		\varnothing	\$15,539,345	\$2.36	2.2\%	7\%		\checkmark
Michigan	$\checkmark \star$	1\% (2)	\$18,771,116	\$1.88	1.5\%	45\%	\checkmark	\checkmark
Minnesota (7)		\varnothing	\$19,460,128	\$3.70	2.5\%	79\%	\checkmark	
Mississippi		\varnothing	\$4,636,451	\$1.57	0.6\%	36\%		\checkmark
Missouri (7)		\varnothing	\$18,769,533	\$3.13	1.8\%	49\%	\checkmark	
Montana	*	*	\$6,462,998	\$6.63	1.6\%	64\%	*	*
Nebraska		\varnothing	\$2,991,042	\$1.66	0.9\%	49\%	\checkmark	
Nevada		\varnothing	\$2,969,071	\$1.12	0.8\%	46\%	*	*
New Hampshire		\varnothing	\$4,444,213	\$3.36	2.3\%	88\%		\checkmark
New Jersey		\varnothing	\$8,007,568	\$0.92	0.9\%	24\%	\checkmark	
New Mexico	*	*	\$9,481,589	\$4.72	2.4\%	74\%	*	*
New York		\varnothing	\$31,163,146	\$1.59	1.8\%	35\%		\checkmark
North Carolina	\checkmark	\$6.45 MM (3)	\$21,760,070	\$2.32	1.9\%	45\%	\checkmark	
North Dakota		\varnothing	\$2,342,827	\$3.62	0.7\%	42\%	\checkmark	\checkmark
Ohio		\varnothing	\$17,269,871	\$1.50	1.2\%	41\%		\checkmark
Oklahoma	$\checkmark \star$	\$4.4 MM	\$3,300,893	\$0.90	0.5\%	1\%	\checkmark	
Oregon	\checkmark	1\% (4)	\$9,048,618	\$2.37	1.7\%	30\%	*	*
Pennsylvania		\varnothing	\$43,102,354	\$3.42	2.5\%	60\%		\checkmark
Rhode Island	\checkmark	*	\$4,631,632	\$4.40	2.0\%	48\%	\checkmark	\checkmark
South Carolina	\checkmark	\varnothing	\$4,351,629	\$0.95	0.6\%	26\%	\checkmark	\checkmark
South Dakota		\varnothing	\$3,790,725	\$4.67	1.3\%	30\%	\checkmark	\checkmark
Tennessee	\checkmark	\varnothing	\$19,063,292	\$3.03	2.2\%	73\%	\checkmark	
Texas		\varnothing	\$38,248,550	\$1.54	1.1\%	51\%		\checkmark
Utah		\varnothing	\$5,947,421	\$2.14	1.7\%	45\%		\checkmark
Vermont		\varnothing	\$5,262,557	\$8.46	2.7\%	74\%	\checkmark	
Virginia	$\checkmark \star$	*	\$4,505,240	\$0.57	0.5\%	21\%		\checkmark
Washington	\checkmark	\$20 MM	\$23,591,191	\$3.54	2.7\%	64\%	\checkmark	\checkmark
West Virginia		\varnothing	\$2,824,872	\$1.55	0.6\%	8\%	\checkmark	\checkmark
Wisconsin (7)		\varnothing	\$8,199,904	\$1.45	1.0\%	42\%	\checkmark	
Wyoming		\varnothing	\$3,425,707	\$6.29	1.2\%	55\%	\checkmark	\checkmark
Mean/Average	No	\varnothing	\$13,191,768	\$2.17	1.6\%	48\%	Yes	Yes
Median	No	\varnothing	\$8,007,568	\$2.32	1.6\%	47\%	Yes	Yes
High	\varnothing	\varnothing	\$65,053,542	\$10.97	3.1\%	88\%	\varnothing	\varnothing
Low	\varnothing	\varnothing	\$2,342,827	\$0.46	0.4\%	1\%	\varnothing	\varnothing

[^10]
Bike/Ped Funding in Cities

City	City spending target for bicycling and walking?		Dedicated city budget funds in 2010	Federal transportation funds (5-year average) (2)		
	$\begin{aligned} & \checkmark=\text { Yes } \\ & \text { (1) } \end{aligned}$	Amount		Obligated to bike/ ped projects/yr.	Per capita	$\left\|\begin{array}{c} \% \text { to bike } / \\ \text { ped } \end{array}\right\|$
Albuquerque	$\checkmark \star$	5\%	\$2,500,000	\$2,718,956	\$5.14	14.5\%
Arlington, TX		\varnothing	*	\$53,968	\$0.14	0.3\%
Atlanta	*	*		\$2,448,939	\$4.53	1.0\%
Austin	$\checkmark \star$	\$10 MM	\$12,135,216	\$1,404,496	\$1.78	3.0\%
Baltimore		\varnothing	\$750,000	\$139,188	\$0.22	0.3\%
Boston	*	*	\$600,000	\$252,717	\$0.39	0.2\%
Charlotte	\checkmark	\varnothing	\$9,500,000	\$1,461,961	\$2.08	1.8\%
Chicago		\varnothing	*	\$561,871	\$0.20	0.2\%
Cleveland	\checkmark (5)	*	*	\$256,637	\$0.59	0.7\%
Colorado Springs	$\checkmark \star$	*	*	\$319,104	\$0.80	0.7\%
Columbus	\checkmark	\$9.3 MM	\$4,800,000	\$583,575	\$0.75	1.7\%
Dallas		\varnothing	\$4,000,000	\$9,072,771 (6)	\$6.98	9.8\%
Denver		\varnothing	\$4,700,000	\$1,122,056	\$1.84	0.9\%
Detroit	*	*	*	\$758,446	\$0.83	0.4\%
El Paso		\varnothing	\$3,500,000	\$559,145	\$0.90	1.0\%
Fort Worth		\varnothing	\$150,000	\$264,717	\$0.36	0.2\%
Fresno	\checkmark	\$1.25 MM	\$1,750,000	\$437,165	\$0.91	1.2\%
Honolulu	$\checkmark \star$	\$1 MM	\$1,000,000	\$204,692	\$0.55	8.6\%
Houston		\varnothing	*	\$4,871,182	\$2.15	2.1\%
Indianapolis	*	*	*	\$1,837,493	\$2.28	2.7\%
Jacksonville		\varnothing	*	\$1,270,316	\$1.56	0.9\%
Kansas City, MO		\varnothing	\$6,866,000	\$1,799,489	\$3.73	11.0\%
Las Vegas	\checkmark	\$500 M	\$100,000	\$52,687	\$0.09	0.1\%
Long Beach		\varnothing	*	\$684,781	\$1.48	0.9\%
Los Angeles	\checkmark	*	\$0	\$1,654,322	\$0.43	0.6\%
Louisville	$\checkmark \star$	\$5 MM	\$513,000	\$430,233	\$0.76	1.0\%
Memphis		\varnothing	\$415,716	\$1,032,425	\$1.53	1.2\%
Mesa		\varnothing	*	\$132,906	\$0.28	0.2\%
Miami		\varnothing	*	\$3,310,209	\$7.64	1.6\%
Milwaukee		\varnothing	* *	\$1,029,258	\$1.70	1.0\%
Minneapolis		\varnothing	\$15,132,173	\$3,651,179	\$9.47	2.0\%
Nashville	$\checkmark \star$	\$25 MM	\$6,100,000	\$3,085,067	\$5.10	4.7\%
New Orleans		\varnothing	\$100,000	\$2,459,000	\$6.93	1.5\%
New York		\varnothing	*	\$288,483	\$0.03	0.1\%
Oakland		\varnothing	\$7,980,000	\$2,025,967	\$4.95	3.4\%
Oklahoma City		\varnothing	\$2,100,000	(4)	(4)	(4)
Omaha		\varnothing	*	\$1,501,627	\$3.30	2.8\%
Philadelphia		\varnothing	*	\$4,335,976	\$2.80	3.6\%
Phoenix	\checkmark	\$50 M	\$0	\$1,500,697	\$0.94	1.6\%
Portland, OR	$\checkmark \star$	\$30 MM	\$7,000,000	\$1,945,975	\$3.43	6.8\%
Raleigh		\varnothing	\$855,000	\$1,132,890	\$2.80	3.7\%
Sacramento		\varnothing	*	\$3,944,689	\$8.45	3.9\%
San Antonio	*	*	*	\$2,874,715	\$2.09	4.2\%
San Diego		\varnothing	*	\$3,760,317	\$2.88	2.8\%
San Francisco	\checkmark	*	**	\$2,082,907	\$2.55	0.7\%
San Jose		\varnothing	\$1,600,000	\$2,031,048	\$2.11	4.9\%
Seattle		\varnothing	*	\$531,577	\$0.86	0.9\%
Tucson		\varnothing	\$200,000	\$3,922,873	\$7.21	5.9\%
Tulsa		\varnothing	*	\$231,272	\$0.59	0.2\%
Virginia Beach		\varnothing	\$200,000	\$70,618	\$0.16	0.1\%
Washington, DC	$\checkmark \star$	5\%	\$1,500,000	\$5,890,475	\$9.82	3.4\%
Mean/Average	No	\varnothing	\$3,311,969	\$1,713,189	\$1.80 (3)	1.6\% (3)
Median	No	\varnothing	\$1,600,000	\$1,270,316	\$1.70	1.2\%
High	\varnothing	\varnothing	\$15,132,172	\$9,072,771	\$9.82	14.5\%
Low	\varnothing	\varnothing	\$0	\$52,687	\$0.03	0.1\%

Legend: (this page and previous)
$\checkmark=$ Yes/has policy
$\star=$ New since 2010 Benchmarking Report
$\varnothing=$ Not applicable = Data unavailable = High value
= Low value
Sources: City Surveys, FHWA FMIS 2006-2010 Notes: See disclaimer regarding differences in funding reporting on page 82 of this report. (1) Blank cells should be understood to mean a "no" response. (2) Data are based on the 5-year average of funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years. FHWA projects are coded by "urbanized area," county, and "standard place code." Data were sorted by urbanized area standard place code, and then county code to most accurately capture a particular city's funding amount. Because not all projects include all codes, these figures should be seen as approximate estimates for each city. (3) Weighted average. (4) Due to large amounts of deobligated funds in the 5 -year period between 2006-2010, accurate funding estimates could not be obtained for this city. (5) City did not respond to 2010/201 survey, data from previous year. (6) In 2009 Dallas obligated \$16.7 million from ARRA toward "The Park," a major bicycle/ pedestrian/open space project. Another \$20 million will come from state and federal highway funds, which may explain the large amount of funding to bike/ped in this period.
jurisdictions play a significant role in determining how their federal transportation dollars are spent.

Unfortunately, this has meant that often bicycle and pedestrian projects not only receive a smaller than fair share of funds, but are also disproportionately targeted for rescissions. Since 2002, Congress has enacted rescissions, removal of apportioned funding before the funding is set to expire, that have affected transportation funding. In mostreseservation years, states have had discretion as to how much to rescind from programs such as the Transportation Enhancement program as opposed to other federal-aid highway programs.

Transportation Enhancements

The Transportation Enhancement (TE) program is the best known funding source for bicycle and pedestrian infrastructure improvements. Of Transportation Enhancements funding, $\$ 265$ million, or 48%, is allocated to biking and walking infrastructure and programs annually, making it the most important federal funding program to track.

Bicycle and pedestrian projects are disproportionately affected by rescissions when states choose to rescind a greater percentage of TE funds than in other transportation funding programs. \$2.6 billion, or 21% of apportioned TE funding, has been rescinded since 1992.

In 2010, TE comprised 2.3% of apportionments but 26.4% of rescissions. This disparity was greatest in Nebraska where 100% of rescinded funds were TE. Texas, Nevada, and Arkansas also lead for disproportionately rescinding TE funds with $78.8 \%, 62.1 \%$, and 54.5% of funds rescinded from TE, respectively. (Continued page 91)

Distribution of TE Funding by Category
 10 Archaeological

 Planning/Research$0.5 \% \quad 11$. Environmental Mitigation

Source: NTEC 2010 Note: (1) Numbers round up and so appear to add to less than 100%.
Distribution of TE Funding across Bicycle and Pedestrian Projects

Source: NTEC 2010 Note: (1) Numbers round up and so appear to add to more than 100%.

Percent of Transportation Enhancement Funding to Bike/Ped by State

Source: FHWA FMIS 2006-2010 Note: (1) Figures for this graph are based on a 5 -year average of funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years.

Most TE funding (48\%) goes toward bicycling and walking facilities, education, and safety. States vary greatly on how they spend their TE dollars. New Hampshire dedicates the greatest percentage of TE funds to bicycling and walking (88%); Oklahoma dedicates the smallest share to bicycling and walking (1%).
> 48% of TE funding goes to bicycling and walking.

Transportation Enhancement Rescissions

What are rescissions?

Periodically, Congress rescinds, or cancels, unspent transportation funds from State DOTs. Rescissions are essentially a bookkeeping measure, which allows the USDOT to take long unspent funds off the books. However, some state DOTs have disproportionately drained bicycle and walking funding sources to build more highways.

What is at stake for bicycle and pedestrian projects?

The USDOT tells states how much money they have to give back, but state DOTs decide which unspent funds they will send back first. Historically, some of the strongest programs for bicycle and pedestrian projects-Transportation Enhancements (TE) and Congestion Mitigation \& Air Quality (CMAQ)—suffer dramatically higher rescission rates than other programs. For example, TE and CMAQ made up just 7.3 percent of a state DOT's 2010 transportation apportionments, but they made up a much larger share of what a state sends back. In August 2010, out of the $\$ 2.2$ billion rescinded, $\$ 968$ million (44\%) came from CMAQ and TE. (America Bikes 2011).

Legend:

$$
\begin{aligned}
\varnothing & =\text { Not applicable } \\
* & =\text { Officials could } \\
& \text { not access data } \\
& =\text { High value } \\
& =\text { Low value }
\end{aligned}
$$

Source: NTEC, 9/24/10 Notes: The District of Columbia is included in this chart for comparison purposes although in most state charts in this report it is not included. (1) All percent averages are weighted.

State	2009			2010	
	TE as \% of apportionments	TE as \% of rescissions (Rescission 1)	TE as \% of rescissions (Rescission 2)	TE as \% of apportionments	TE as \% of rescissions (8.13.10)
Alabama	2.4\%	27.0\%	0.5\%	2.3\%	16.3\%
Alaska	2.1\%	14.4\%	0.0\%	2.1\%	0.9\%
Arizona	2.4\%	0.0\%	2.9\%	2.4\%	33.2\%
Arkansas	2.5\%	42.1\%	2.8\%	2.4\%	54.5\%
California	2.3\%	36.8\%	5.3\%	2.2\%	43.0\%
Colorado	2.5\%	23.0\%	12.2\%	2.5\%	20.1\%
Connecticut	1.9\%	12.7\%	3.4\%	1.8\%	22.3\%
Delaware	2.6\%	2.4\%	2.7\%	2.6\%	0.4\%
Dist. of Columbia	2.4\%	44.0\%	3.8\%	2.4\%	0.0\%
Florida	2.7\%	22.3\%	5.6\%	2.8\%	21.9\%
Georgia	2.7\%	23.9\%	10.4\%	2.6\%	44.6\%
Hawaii	2.5\%	26.1\%	2.8\%	2.3\%	2.4\%
Idaho	2.1\%	5.0\%	7.0\%	2.1\%	44.2\%
Illinois	2.4\%	9.8\%	8.8\%	2.4\%	0.0\%
Indiana	2.4\%	0.1\%	6.9\%	2.5\%	0.0\%
lowa	2.5\%	0.0\%	3.7\%	2.6\%	0.0\%
Kansas	3.0\%	0.0\%	3.1\%	2.9\%	3.0\%
Kentucky	2.1\%	0.0\%	7.1\%	2.2\%	16.4\%
Louisiana	2.0\%	71.7\%	3.9\%	2.0\%	12.8\%
Maine	2.3\%	0.0\%	2.9\%	2.1\%	0.0\%
Maryland	2.2\%	17.4\%	2.5\%	2.1\%	2.7\%
Massachusetts	2.1\%	12.6\%	0.0\%	2.0\%	20.8\%
Michigan	2.7\%	29.7\%	8.0\%	2.6\%	33.5\%
Minnesota	3.0\%	27.6\%	4.5\%	2.9\%	0.1\%
Mississippi	2.6\%	0.0\%	10.8\%	2.5\%	3.8\%
Missouri	2.4\%	3.0\%	8.0\%	2.4\%	2.4\%
Montana	1.7\%	0.0\%	2.1\%	1.8\%	22.5\%
Nebraska	2.6\%	0.2\%	9.4\%	2.6\%	100.0\%
Nevada	2.3\%	20.0\%	15.8\%	2.3\%	62.1\%
New Hampshire	2.5\%	17.6\%	6.5\%	2.4\%	0.0\%
New Jersey	1.9\%	22.2\%	2.2\%	1.9\%	11.1\%
New Mexico	2.2\%	2.3\%	2.7\%	2.2\%	24.2\%
New York	1.8\%	16.9\%	8.5\%	1.7\%	20.1\%
North Carolina	2.3\%	12.1\%	10.3\%	2.4\%	31.7\%
North Dakota	2.0\%	0.8\%	3.1\%	2.0\%	30.2\%
Ohio	2.3\%	0.0\%	2.8\%	2.3\%	12.9\%
Oklahoma	2.7\%	37.2\%	3.8\%	2.7\%	24.0\%
Oregon	2.3\%	0.0\%	7.0\%	2.3\%	39.7\%
Pennsylvania	1.8\%	0.7\%	1.9\%	1.7\%	6.9\%
Rhode Island	1.8\%	2.0\%	2.1\%	1.8\%	3.5\%
South Carolina	2.7\%	100.0\%	4.8\%	2.7\%	0.0\%
South Dakota	2.3\%	19.9\%	4.4\%	2.3\%	43.3\%
Tennessee	2.4\%	5.6\%	10.5\%	2.4\%	47.4\%
Texas	2.6\%	0.3\%	4.8\%	2.6\%	78.8\%
Utah	2.3\%	0.0\%	0.0\%	2.4\%	0.0\%
Vermont	2.2\%	0.0\%	3.7\%	2.2\%	0.0\%
Virginia	2.4\%	3.2\%	6.9\%	2.4\%	3.3\%
Washington	2.1\%	9.1\%	7.2\%	2.1\%	34.6\%
West Virginia	1.8\%	5.8\%	1.9\%	1.9\%	4.5\%
Wisconsin	2.7\%	49.2\%	3.1\%	2.8\%	37.5\%
Wyoming	1.6\%	0.0\%	1.6\%	1.5\%	0.0\%
Mean/Average (1)	2.3\%	16.5\%	5.4\%	2.3\%	26.4\%
Median	2.3\%	7.5\%	3.8\%	2.3\%	14.6\%
High	3.0\%	100.0\%	15.8\%	2.9\%	100.0\%
Low	1.6\%	0.0\%	0.0\%	1.5\%	0.0\%

Safe Routes to School

Safe Routes to School (SRTS) is the newest federally funded program that is 100% dedicated to funding bicycle and pedestrian capital, education, promotion, and enforcement projects. The National SRTS program was signed into law, under the federal transportation legislation SAFETEA-LU, in 2005. Because the program is new, data are still sparse. The Safe Routes to School National Partnership and the National Center for Safe Routes to School have compiled data to measure the progress of states' Safe Routes to School programs. Data presented in this report include each state's number of schools funded, total funding awarded to and obligated by each state, percent of funding awarded based on requests, and percent of applications funded.

As of September 2011, approximately $\$ 453$ million has been obligated to 11,163 schools or programs through the federal Safe Routes to School (SRTS) program. This amounts to $\$ 9.37$ per public school student, roughly $\$ 1.34$ / year/student.

Safe Routes to School Funding

States	Funded Schools/ Programs (2,6)	Announced Funds FY 2005-2011 (1,3,4)			Obligated Funds FY 2005-2011 (1,3,5)			Percent of requests awarded (2)
		Total	Per Student (7)	Percent Announced	Total	$\begin{gathered} \text { Per } \\ \text { Student (7) } \end{gathered}$	$\begin{aligned} & \text { Percent } \\ & \text { Obligated } \end{aligned}$	
Alabama	107	\$14,286,240	\$19	97\%	\$6,142,416	\$8	42\%	57\%
Alaska	115	\$1,138,121	\$9	15\%	\$4,990,000	\$39	66\%	80\%
Arizona	180	\$12,415,000	\$12	67\%	\$5,290,562	\$5	28\%	42\%
Arkansas	69	\$5,274,235	\$11	56\%	\$5,575,253	\$12	59\%	51\%
California	2,448	\$157,514,967	\$25	136\%	\$56,641,466	\$9	49\%	27\%
Colorado	571	\$9,842,533	\$12	68\%	\$7,460,789	\$9	52\%	45\%
Connecticut	36	\$5,767,324	\$10	51\%	\$4,575,499	\$8	41\%	36\%
Delaware	31	\$3,168,366	\$27	44\%	\$4,908,569	\$42	68\%	100\%
Dist. of Columbia	22	\$3,811,699	\$49	53\%	\$4,392,500	\$56	61\%	100\%
Florida	1,000	\$87,179,272	\$33	177\%	\$39,977,902	\$15	81\%	*
Georgia	380	\$20,059,080	\$12	70\%	\$9,338,481	\$6	32\%	40\%
Hawaii	5	\$549,133	\$3	8\%	\$1,882,023	\$10	26\%	45\%
Idaho	180	\$5,125,770	\$19	72\%	\$4,314,712	\$16	61\%	69\%
Illinois	284	\$22,039,071	\$10	55\%	\$9,818,881	\$5	25\%	20\%
Indiana	223	\$13,571,634	\$13	68\%	\$5,111,679	\$5	26\%	37\%
lowa	84	\$8,662,776	\$18	88\%	\$6,477,573	\$14	66\%	30\%
Kansas	55	\$8,611,074	\$42	91\%	\$4,788,264	\$23	50\%	40\%
Kentucky	126	\$9,526,165	\$14	74\%	\$5,333,836	\$8	41\%	35\%
Louisiana	64	\$10,960,261	\$24	75\%	\$7,472,726	\$16	51\%	59\%
Maine	170	\$5,369,500	\$28	74\%	\$2,980,094	\$15	41\%	49\%
Maryland	290	\$16,972,302	\$20	100\%	\$10,376,049	\$12	61\%	72\%
Massachusetts	389	\$5,968,143	\$6	32\%	\$11,762,910	\$12	63\%	100\%
Michigan	84	\$21,542,334	\$13	69\%	\$20,330,571	\$12	65\%	87\%
Minnesota	115	\$15,206,670	\$19	96\%	\$6,578,649	\$8	41\%	23\%
Mississippi	80	\$8,347,030	\$17	79\%	\$2,511,482	\$5	24\%	49\%
Missouri	192	\$17,787,140	\$20	99\%	\$7,485,073	\$9	42\%	52\%
Montana	81	\$4,223,552	\$30	58\%	\$4,648,710	\$33	64\%	68\%
Nebraska	82	\$4,997,174	\$17	69\%	\$2,565,017	\$9	36\%	21\%
Nevada	248	\$2,209,127	\$5	24\%	\$5,484,183	\$13	61\%	92\%
New Hampshire	147	\$5,138,888	\$26	73\%	\$1,811,280	\$9	26\%	82\%
New Jersey	192	\$15,195,900	\$11	57\%	\$9,988,463	\$7	38\%	19\%
New Mexico	44	\$3,710,787	\$11	50\%	\$2,960,314	\$9	40\%	72\%
New York	181	\$27,956,276	\$10	52\%	\$19,615,550	\$7	37\%	40\%
North Carolina	135	\$9,724,194	\$7	37\%	\$6,219,658	\$4	24\%	35\%
North Dakota	145	\$5,540,862	\$59	78\%	\$4,355,397	\$46	61\%	28\%
Ohio	415	\$33,920,000	\$20	99\%	\$11,160,794	\$7	33\%	90\%
Oklahoma	71	\$6,454,970	\$10	55\%	\$4,845,200	\$7	41\%	58\%
Oregon	116	\$12,653,513	\$22	113\%	\$7,014,373	\$12	63\%	70\%
Pennsylvania	126	\$21,013,336	\$12	60\%	\$6,230,137	\$4	18\%	41\%
Rhode Island	40	\$4,600,000	\$31	63\%	\$2,659,174	\$18	37\%	44\%
South Carolina	26	\$5,152,000	\$7	39\%	\$7,114,331	\$10	54\%	45\%
South Dakota	33	\$3,317,615	\$27	46\%	\$2,169,349	\$18	30\%	65\%
Tennessee	80	\$8,836,252	\$9	49\%	\$5,636,410	\$6	31\%	31\%
Texas	853	\$54,939,830	\$11	72\%	\$34,363,113	\$7	45\%	80\%
Utah	50	\$8,526,885	\$15	86\%	\$8,005,168	\$14	81\%	46\%
Vermont	60	\$5,465,338	\$59	74\%	\$4,412,766	\$47	59\%	63\%
Virginia	166	\$12,058,892	\$10	54\%	\$14,615,766	\$12	65\%	59\%
Washington	86	\$21,133,086	\$21	110\%	\$9,069,335	\$9	47\%	22\%
West Virginia	72	\$5,798,087	\$21	81\%	\$5,482,427	\$19	77\%	47\%
Wisconsin	350	\$13,617,768	\$16	82\%	\$10,180,323	\$12	61\%	35\%
Wyoming	64	\$6,607,496	\$76	93\%	\$6,027,210	\$70	85\%	77\%
Average/Total (8)	11,163	\$727,555,485	\$15	74\%	\$453,152,407	\$9.37	46\%	44\%
Median	115	\$8,662,776	\$17	69\%	\$6,027,210	\$10	47\%	48\%
High	2,448	\$157,514,967	\$76	177\%	\$56,641,466	\$70	85\%	100\%
Low	5	\$549,133	\$3	8\%	\$1,811,280	\$4	18\%	19\%

Note: Sources and notes for this table on following page.

Legend: = High value = Low value * = Data unavailable

The National Center for Safe Routes to School also collects data to track demand for Safe Routes to School programs. Data show that nationwide, just 44% of funding requests have been awarded (based on total funds requested). States vary on how they are meeting the demand for Safe Routes to School programs and projects, but in almost all cases funding requests exceed available funding. New Jersey and Illinois have the largest gaps between supply and demand and are able to fund just 19% and 20% of the total funds requested, respectively. Delaware, Washington DC, and Massachusetts best meet demand with current funding.

One hundred percent of funds requested have been awarded in these states. The Safe Routes to School National Partnership and the National Center for Safe Routes to School have leading roles in benchmarking Safe Routes to School performance and publish regular progress reports. See Appendix 5, page 216, for links to their websites and the most up-to-date measurements for Safe Routes to School.

Stimulus Bill Boosts Biking and Walking

 In February 2009 the American Recovery and Reinvestment Act (ARRA) was signed into law. Known as the "stimulus bill," this legislation pumped money(Table Page 92) Sources: (1) SRTSNP September 2011 (2) NCSRTS 2011 (3) STN 2011 (3) Total pupil data from STN 2011 takes into account grades K-12 whereas Safe Routes to School (SRTS) funding can only be spent on grades K-8. Notes: The District of Columbia is included in this table for comparison, although it is not compared to states in most other areas of the report; all dollar figures cited are as of September 2011. (4) "Announced" columns measure the amount of funding each state has announced for local grants and statewide spending-not including administrative expenses. These are the funds that will ultimately help local communities create safer routes to school.(5) "Obligated" columns reflect the amount that the state has expended or contracted to expend on Safe Routes to School, including local grants, statewide spending, and administrative expenses. Obligation is important as it demonstrates what level of funding has been or will soon be spent to build infrastructure projects, support noninfrastructure activities, and implement the program. (6) "Funded Schools/Programs" shows the number of schools in the state that are receiving SRTS funds or the number of state-funded SRTS activities. If the number of schools is not known, the number of SRTS programs is used. This number will usually be an estimate, because many funding recipients will conduct programs in numerous schools. Fund awards are typically made through a competitive process, but in some instances the state may directly select local programs to fund. (7) Total pupil data are representative of public schools only. (8) All averages are weighted except for number of funded schools/programs, total awarded funds, and total obligated funds.

Stimulus Bill Funding

States	ARRA Funds to Bike/Ped			TE ARRA to Bike/Ped		Percent of 09-10 Bike/ Ped Funds from ARRA
	Total	Amt. per capita	$\begin{aligned} & \% \text { of ARRA } \\ & \text { Funds } \end{aligned}$	Total	\% of TE ARRA	
Alabama	\$13,117,979	\$2.79	3\%	\$11,469,152	74\%	42\%
Alaska	\$3,996,444	\$5.72	2\%	\$2,503,757	54\%	18\%
Arizona	\$9,880,158	\$1.50	2\%	\$8,078,813	52\%	24\%
Arkansas	\$113,093	\$0.04	0.03\%	\$0	0\%	1\%
California	\$64,130,045	\$1.74	3\%	\$40,436,650	58\%	34\%
Colorado	\$10,135,937	\$2.02	3\%	\$8,328,697	69\%	26\%
Connecticut	\$14,564,992	\$4.14	5\%	\$5,318,006	59\%	84\%
Delaware	\$8,969,970	\$10.13	7\%	\$2,629,853	72\%	48\%
Dist. of Columbia	\$4,081,938	\$3.47	3\%	\$3,705,235	100\%	22\%
Florida	\$50,223,541	\$2.71	4\%	\$35,763,214	89\%	27\%
Georgia	\$44,776,536	\$4.56	5\%	\$20,588,471	74\%	54\%
Hawaii	\$4,919,776	\$3.80	4\%	\$3,772,391	100\%	77\%
Idaho	\$5,974,347	\$3.86	3\%	\$759,129	32\%	54\%
Illinois	\$17,506,261	\$1.36	2\%	\$14,995,129	53\%	40\%
Indiana	\$29,632,284	\$4.61	4\%	\$14,293,288	72\%	40\%
lowa	\$10,907,982	\$3.63	3\%	\$9,964,058	93\%	28\%
Kansas	\$4,900,624	\$1.74	1\%	\$4,900,624	47\%	34\%
Kentucky	\$22,043,752	\$5.11	5\%	\$8,035,000	64\%	30\%
Louisiana	\$13,322,767	\$2.97	3\%	\$12,373,698	96\%	38\%
Maine	\$2,007,979	\$1.52	1\%	\$2,007,979	51\%	19\%
Maryland	\$640,505	\$0.11	0.2\%	\$640,505	5\%	10\%
Massachusetts	\$41,373,513	\$6.27	11\%	\$8,162,624	62\%	74\%
Michigan	\$18,478,035	\$1.85	2\%	\$17,968,035	71\%	36\%
Minnesota	\$13,820,869	\$2.62	3\%	\$6,201,824	41\%	23\%
Mississippi	\$1,284,116	\$0.43	0.4\%	\$1,284,116	12\%	7\%
Missouri	\$22,991,527	\$3.84	4\%	\$11,535,614	60\%	36\%
Montana	\$8,489,571	\$8.71	4\%	\$5,642,172	89\%	47\%
Nebraska	\$1,695,334	\$0.94	1\%	\$1,695,334	50\%	15\%
Nevada	\$3,999,344	\$1.51	2\%	\$2,540,000	42\%	53\%
New Hampshire	\$3,685,239	\$2.78	3\%	\$3,685,239	95\%	53\%
New Jersey	\$13,982,716	\$1.61	2\%	\$12,330,516	63\%	49\%
New Mexico	\$15,240,891	\$7.58	5\%	\$5,530,903	73\%	53\%
New York	\$29,840,320	\$1.53	3\%	\$16,640,698	49\%	27\%
North Carolina	\$26,384,864	\$2.81	4\%	\$13,947,001	63\%	37\%
North Dakota	\$3,123,374	\$4.83	2\%	\$3,123,374	61\%	44\%
Ohio	\$11,883,677	\$1.03	1\%	\$4,376,083	16\%	25\%
Oklahoma	\$15,488,071	\$4.20	3\%	\$13,939,657	100\%	75\%
Oregon	\$9,387,747	\$2.45	3\%	\$2,477,971	25\%	27\%
Pennsylvania	\$34,918,915	\$2.77	3\%	\$25,150,853	82\%	26\%
Rhode Island	\$5,490,008	\$5.21	4\%	\$3,881,492	94\%	54\%
South Carolina	\$12,775,817	\$2.80	3\%	\$12,775,817	92\%	88\%
South Dakota	\$8,309,940	\$10.23	4\%	\$7,807,946	85\%	58\%
Tennessee	\$18,431,994	\$2.93	3\%	\$7,942,162	46\%	36\%
Texas	\$43,502,001	\$1.76	2\%	\$38,699,978	57\%	38\%
Utah	\$2,039,744	\$0.73	1\%	\$2,039,744	32\%	12\%
Vermont	\$1,787,334	\$2.87	1\%	\$1,787,334	47\%	19\%
Virginia	\$1,607,263	\$0.20	0.3\%	\$0	0\%	8\%
Washington	\$18,038,552	\$2.71	3\%	\$4,114,369	28\%	28\%
West Virginia	\$5,948,867	\$3.27	3\%	\$5,529,353	87\%	55\%
Wisconsin	\$9,618,944	\$1.70	2\%	\$9,141,758	58\%	40\%
Wyoming	\$2,940,296	\$5.40	2\%	\$2,429,179	51\%	33\%
Average/Total	\$742,405,794(1)	\$2.42(2)	3\%(2)	\$462,944,793(1)	59\%(2)	35\%(2)
Median	\$10,135,937	\$2.79	3\%	\$5,642,172	60\%	36\%
High	\$64,130,045	\$10.23	11\%	\$40,436,650	100\%	88\%
Low	\$113,093	\$0.04	0.3\%	\$0	0\%	1\%

[^11]and jobs into the U.S. economy. Transportation is one sector that benefited from a large influx of funds in 2009 and 2010, and bicycling and walking also benefited.

The nearly $\$ 750$ million in stimulus funds that were obligated to bicycle and pedestrian projects in FY 2009 and 2010 is likely a large underestimate. It is common for bicycle and pedestrian projects to be coded incorrectly, thus undercounting spending rates. America Bikes explains:
For example, the state of Maryland obligated $\$ 12.3$ million, almost 100 percent of its ARRA TE money, to making sidewalks accessible, but it did not record this as a bicycle or pedestrian project. (America Bikes 2011).

This project would therefore not appear as dollars spent on bicycling and walking. Variation in how states record projects can dramatically affect how they appear to obligate funds to bicycling and walking.

Recognizing this, FMIS data indicate that bicycle and pedestrian projects accounted for 3% of all ARRA transportation funds in 2009 and 2010. In these years, over $\$ 460$ million in ARRA funding went to Transportation Enhancements, 59% of which were bicycle and pedestrian projects. Thirty-five percent of all bicycle and pedestrian funding in 2009 and 2010 was ARRA funds, accounting for a large spike in bike / ped funding compared to previous years.

States vary widely on how they chose to spend ARRA transportation funds. Massachusetts reported spending 11\% of its ARRA transportation funds on bicycling and walking, the highest rate among states. Arkansas reported just 0.03% spent on bicycling and walking, amounting to just four cents per capita, the lowest among states. The District of Columbia, Hawaii, and Oklahoma spent 100% of ARRA TE funds on bicycling and walking projects while Arkansas and Virginia spent no ARRA TE funds on these modes.

Infrastructure

Just as road infrastructure has been implemented to facilitate safe and accessible routes for motorized vehicles, so to is appropriate infrastructure critical for safe and accessible routes for bicycling and walking (Hopkinson and Wardman 1996, McClintock and Cleary 1996, Reynolds et al., 2009, Rietveld 2000). To see how cities compared to one another on infrastructure for bicycling and walking, they were asked to

Looking Outside the Borders Investing in Bicycling and Walking

Case studies show that the countries and cities that invest the most in bicycling and walking have higher bicycling and walking mode share, and are safer places to bicycle and walk (Pucher et al., 2010; Pucher and Buehler, 2007 and 2008).
An international comparison of bicycle funding and mode share by Gotschi and Mills and Rails-to-Trails Conservancy (2008; chart this page) demonstrates that European cities that invest greater amounts per capita into bicycling have greater levels of bicycling. These cities provide strong evidence that in order to increase active transportation, the United States must make a much greater investment in infrastructure and programs encouraging bicycling and walking.

Bicycle Funding and Mode Share

Sources: This graph is modified with permission from Thomas Gotschi and Kevin Mills, Active Transportation for America-The Case for Increased Federal Investment in Bicycling and Walking. Rails-to-Trails Conservancy, 2008. www.railstotrails. org/atfa; modified from J. Pucher et al., 2007. "At the Frontiers of Cycling: Policy Innovations in the Netherlands, Denmark, and Germany," World Transport Policy \& Practice; ACS 2007-2009, FHWA FMIS 2006-2010. Note: *Spending data for the United States and Portland are for bicycling and walking combined.

report on miles of existing and planned facilities including on-street striped bike lanes, multi-use paths, and signed bicycle routes. Cities averaged 1.8 miles of bicycle facilities (bike lanes, multiuse paths, and signed bicycle routes combined) per square mile. On the high end of the range is San Francisco, with 5.6 miles of bicycle facilities per square mile. Austin and Long Beach rank second and third, with 4.5 miles of facilities per square mile.

Cities average 19.2 miles of sidewalk per square mile. New York reported having 12,750 miles of sidewalk, more than any other city. Baltimore has the densest sidewalk network with 44.4 miles of sidewalk per square mile.

Cities were also asked to report on miles of planned bicycle and pedestrian facilities. Cities who responded reported that 20,908 miles of bicycle facilities and 7,079 miles of pedestrian facilities are planned for the coming years. New York has more planned bicycle facilities than any other cities (1,800 miles). Austin has 3,500 planned miles of pedestrian facilities, more than any other city (see chart page 99).

Innovative Facilities for Bicycling and Walking

 A century of planning roads for cars means that planning for bicyclists, pedestrians, and other users will often require innovative designs and treatments to retrofit existing infrastructure. For the 2012 Benchmarking Report, the Alliance asked cities which, if any, of five innovative treatments they have used or adopted. (For data on innovative facilities, see page 104; for definitions of these facilities, see page 105.)

Shared lane markings, also called "sharrows," are the most common innovative treatment in use today. Thirty-seven cities report that they have used shared lane markings, up 95% from 19 cities two years ago. Ten cities report that they have implemented bicycle boulevards (up from five 2 years ago). Six more cities reported bicycle boulevards are currently under development or have been proposed. Nine cities have implemented bicycle traffic lights. Sixteen cities have used colored bike lane (Continued page 103)

Existing Bicycle Facilities in Major U.S. Cities

Cities average 1.8 miles of bicycle facilities per square mile.

San Francisco and Austin have the most miles of bicycle facilities per square mile among the largest U.S. cities. Fresno, Tucson, and Philadelphia rank highest for miles of bike lanes per square mile. Indianapolis, Oklahoma City, and Detroit have the fewest miles of bicycle facilities per square mile.

Bike/Ped Infrastructure in Cities

City	Current miles of bicycle facilities				Miles of sidewalk		Planned facilities(3)				City adopted goal	
	$\begin{gathered} \hline \text { On-street } \\ \text { bike } \\ \text { lanes(2) } \end{gathered}$	$\begin{gathered} \text { Multi- } \\ \text { use } \\ \text { paths } \end{gathered}$	Signed bicycle routes	$\begin{array}{\|c\|} \hline \text { TotalI } \\ \text { sq. } \\ \text { mile } \end{array}$	Total	Total/ sq.mile	Bicycle (miles)	Over how many years?	Ped. (miles)	$\begin{gathered} \text { Over how } \\ \text { many } \\ \text { years? } \end{gathered}$	To increase bicycle facilities	$\left.\begin{array}{\|c} \hline \text { To increase } \\ \text { ped. } \\ \text { facilities } \end{array} \right\rvert\,$
Albuquerque	372	177	137	3.7	*	*	*	25	*	*	\checkmark	\checkmark
Arlington, TX	1	47	1	0.5	1,100	11.5	272	20	145	20	\checkmark	\checkmark
Atlanta	19	29	37	0.6	2,160	16.2	250	25	900	25		
Austin	168	194	983	4.5	2,144	7.2	1,100	19	3,500	(5)	\checkmark	\checkmark
Baltimore	32	37	20.5	1.1	3,600	44.4	150	10	0	\varnothing	\checkmark	\checkmark
Boston	63	30.3	0	1.9	*	*	150	8	0	\varnothing	\checkmark	
Charlotte	111	39	40	0.6	1,927	6.5	783	25	650	25	\checkmark	\checkmark
Chicago	115	50	241	1.8	*	*	650		*	*	\checkmark	*
Cleveland	7(4)	31(4)	13(4)	0.7	*	*	*	*	*	*	*	*
Colorado Springs	75	110	*	1.0	2,304	11.8	15	25	*	*	\checkmark	\checkmark
Columbus	20	65	39.4	0.6	2,081	9.6	536	17	50	5	\checkmark	\checkmark
Dallas	0	115	1.128	3.7	4,750	13.9	1,296	10	340	10	\checkmark	
Denver	71	85	258	2.7	2,700	17.6	162	*	54	*	\checkmark	\checkmark
Detroit	13.8(4)	25(4)	0 (4)	0.4	*	\%	*	*	*	*		*
El Paso	56	14	*	0.3	*	*	250	15	100	15	\checkmark	\checkmark
Fort Worth	37.6	57.3	44	0.3	*	*	480.3	25	0	\varnothing	\checkmark	\checkmark
Fresno	350	17	7	3.3	1,870	16.7	905	75	*	*	\checkmark	
Honolulu	89	47	37	2.8	*	*	568	20	*	*	\checkmark	
Houston	206	173	156	0.9	*	*	43	5	*	*	\checkmark	
Indianapolis	59(4)	20(4)	*	0.2	*	*	*	*	*	*	*	*
Jacksonville	320	60	*	0.5	4,350	5.8	100.8	*	68.4	*	\checkmark	\checkmark
Kansas City, MO	55.4	42	205	1.0	2,192	7.0	600	15	*	*	\checkmark	\checkmark
Las Vegas	113	51	4	1.2	*	*	331	25	143	25		
Long Beach	94	77	54	4.5	1,587	31.7	*	10	*	*	\checkmark	\checkmark
Los Angeles	167	58	125	0.8	10,750	22.9	1,680	35	*	*	\checkmark	
Louisville	53.7	24.3	89.8	0.5	2,500	7.7	550	20	20	20	\checkmark	\checkmark
Memphis	15	24	75	0.4	3,588	11.4	600	10	*	10		
Mesa	354	46	140	3.9	4,370	31.9	20	5	8	5	\checkmark	\checkmark
Miami	24.6	14.0	0	1.1	1,050	29.2	276.4	20	30.2	20	\checkmark	\checkmark
Milwaukee	104.9	3.1	65.5	1.8	3,000	31.3	393.8	10	*	*	\checkmark	\checkmark
Minneapolis	72	84	12	3.1	2,000	37.0	275	30	108	50	\checkmark	\checkmark
Nashville	64	46	69	0.4	1,066	2.2	858	15	607	15	\checkmark	\checkmark
New Orleans	16	13	31	0.4	2,650	15.7	1,002	20	*	20	\checkmark	\checkmark
New York	407	328	*	2.4	12,750	42.1	1,800	20	*	*	\checkmark	\checkmark
Oakland	58.2	16.8	55	2.3	1,120	20.0	221.8	20	*	20	\checkmark	\checkmark
Oklahoma City	6.6	64.7	76.8	0.2	*	*	409	8	*	*	\checkmark	
Omaha	9	100	9	0.9	*	*	31	2	*	*	\checkmark	\checkmark
Philadelphia	431	82	45.4	4.2	4,500	33.6	*	*	*	*	\checkmark	\checkmark
Phoenix	371	274	124	1.5	*	,	0	\varnothing	0	\varnothing	\checkmark	\checkmark
Portland, OR	183	75	60	2.4	*	*	962	20	*	*	\checkmark	\checkmark
Raleigh	15	80	101	1.4	1,150	8.0	447	20	38	25	\checkmark	\checkmark
Sacramento	237	81	43	3.7	*	*	272	*	*	15	\checkmark	\checkmark
San Antonio	236	44	39	0.7	7.840	17.0	45	1	0	\varnothing	\checkmark	\checkmark
San Diego	325.5	72.3	112.9	1.6	*	*	549.5	*	*	*	\checkmark	\checkmark
San Francisco	100	23	140	5.6	*	*	33	1	*	*	\checkmark	
San Jose	400	54	20	2.7	*	*	500	10	*	*	\checkmark	\checkmark
Seattle	55	45.7	131	2.8	*	*	454.7	10	*	6	\checkmark	\checkmark
Tucson	620	75	90	3.5	*	*	157	30	25	15	\checkmark	\checkmark
Tulsa	8.6	113.1	82.6	1.0	*	*	270.2	5	270.2	5	\checkmark	\checkmark
Virginia Beach	18.3	74.7	75	0.7	*	*	328	10	2.3	10	\checkmark	\checkmark
Washington, DC	77	64	65	3.4	1,600	26.2	130	5	20	10	\checkmark	\checkmark
Mean/Average	135	70	115	1.8(1)	3,311	19.2(1)	460	17	283	17	Yes	Yes
Median	72	54	63	1.2	2,248	16.5	331	17	50	15	Yes	Yes
High	620	328	1,128	5.6	12,750	44.4	1,800	75	3,500	50	\varnothing	\varnothing
Low	0	3.1	0	0.2	1,050	2.2	0	1	0	5	\varnothing	\varnothing

[^12]
Legend:

= High value = Low value
= Not applicc \quad ?
$=$ Officials could not access data

CLOSER LOOK
 San Francisco's Burgeoning Bicycle Network

by Kit Hodge, San Francisco Bicycle Coalition

San Francisco, a hilly city 7 miles long by 7 miles wide (and roughly 800,000 people), has the highest density of biking infrastructure in the United States. And not coincidentally, it boasts seven in ten San Franciscans riding a bike in the city. Though the city still has a long way to go, with only about 8% of locals riding every week, San Francisco is an unexpected success story in the United States After all, the city was prohibited by a local court case from adding any new bicycle infrastructure-even bike parking racks-for 4 years, from 2006 to 2010.

These were four very long years, during which bicycling in the city nevertheless grew at huge rates.

The success of the city can be boiled down to culture, expressed in two areas: a strong, member-driven advocacy organization and the culture of the city. The San Francisco Bicycle Coalition (SFBC) serves 12,000 members, as of July 2011. Members are the heart and soul of the organization, leading local bike infrastructure campaigns, staffing the nonprofit's

huge numbers of volunteer opportunities each year, voting in local elections, and providing the funding that it needs to do its work. The SFBC is hard to miss around town. Coalition members are out pretty much every week knocking on doors, parking bikes at events, tabling on street corners, and doing trainings in places of business. The city is just small enough to make this doable. As a result, it is hard to ignore the organization at City Hall.

City Hall is perhaps also primed to hear bicycle advocates even more than many other cities because of the unique culture of the city. San Francisco prides itself on its green policies, innovations, and culture of inclusion. These attributes can make it easier to sell newer ideas, such as innovative bicycle infrastructure, to elected officials. Though San Francisco is an ethnically diverse city, it is less economically diverse and can feel more culturally homogeneous than other big U.S. cities. This may make it more likely that the idealism, and values of sustainability, innovation, and inclusion are prevalent around the city.

Going forward, San Francisco is poised for an explosion in new bicycle infrastructure and ridership. And not surprisingly, the SFBC's bold plan for 100 miles of crosstown, 8 -to- 80 bikeways by 2020, called Connecting the City, is expected to be driven by the organization's members. Many of the projects called for to create these bikeways are long-desired street safety initiatives that local advocates have clamored for for years. The organization collects and tells their stories to decision makers, and ensures that they are invited to community meetings, have design input, and are empowered to speak at key hearings and in the media.

Growth in Bicycle Facilities ${ }_{(1)}$ in Major U.S. Cities 2009-2011

Source: City surveys 2010/2011 Notes: Cleveland, Detroit, and Indianapolis only have 2009 data because no 2011 data were supplied. (1) For the purpose of this chart, bicycle facilities include bike lanes and multi-use paths.
treatments, up 100% from eight cities as of the 2010 Benchmarking Report. Eight cities report implementing home zones, or woonerfs (only San Jose previously reported experimenting with home zones).

New to the 2012 Benchmarking Report, cities were also asked about additional innovative treatments including bike boxes, cycle tracks, and contra flow bike lanes. Twenty cities report having installed bike boxes, or advanced stop lines, which prioritize cyclists at red lights. Eleven cities have installed cycle tracks and ten cities have contra flow bike lanes.

Portland has used more innovative treatments than any other major U.S. city having implemented every innovation surveyed. San Francisco is close behind only lacking bicycle boulevard implementation. Long Beach, Minneapolis, New York, and Seattle also lead for innovative facilities with six of eight innovative facilities surveyed.

U.S. Bicycle Route System

Also new to the 2012 Benchmarking Report are data about state involvement with the U.S. Bicycle Route System. The U.S. Bicycle Route System (USBRS) is a proposed national network of bicycle routes. These routes link urban, suburban, and rural areas with appropriate bicycle friendly routes including trails, bike paths, roads with shoulders, and low-traffic routes. For a route to be designated as part of the USBRS it must either connect two or more states, a state and an international border, or one or more U.S. Bicycle Routes.

The first two U.S. Bicycle Routes were designated in 1982 and then no ad-
ditional routes were nominated. In 2003 the American Association of State Highway and Transportation Officials (AASHTO) revived the USBRS with an official task force. An inventory of existing bicycle routes (see map on page 106) throughout the United States was created as a first step in drafting a national bicycle network plan. In 2008, AASHTO passed a resolution in support of the National Corridor Plan. An application for route designation was completed in May 2009 (Adventure Cycling Association, 2009).

According to data from Adventure Cy cling Association, 34 states have an active USBRS program. Thirty-one states have identified potential USBRs in state or local bicycle plans. Routes have been officially designated as part of the USBRS in nine states, and three states have posted and signed USBRs.

Bike-Transit Integration

The last bicycling provision measured was bike-transit integration. This report sought to measure how well cities provide for bicyclists on transit. While most cities are successfully integrating bicycles with buses, many fall behind in regard to providing parking for bicyclists at transit (Pucher and Buehler 2009). Almost all cities surveyed have 100% of their city bus fleet equipped with bicycle racks. When it comes to bicycle parking, cities report that only 27% of transit stops have bike parking on average. According to the American Public Transportation Association, this amounts to just 2.5 bicycle parking spaces at bus stops per 10,000 residents (APTA 2011).

Innovative Facilities in Cities

Legend:
$\checkmark=$ Yes/has implemented innovative facility
\star = New since 2010 Benchmarking Report

Source: City surveys 2010/2011 Notes: Responses of "unknown" were taken to mean "no." (1) Unanswered survey. (2) Planned or proposed. (3) Under development at time of survey.

Innovative Facilities Defined

Shared lane mark-ings-Often called "sharrows," these are markings which resemble a bicycle and an arrow painted on a roadway to indicate the direction of travel for bicycles as well as motorized vehicles.

Bicycle boulevards-

A shared roadway which is intended to give priority to bicyclists by optimizing it for bicycle traffic (through traffic calming) and discouraging some motor vehicle traffic. Many of these routes have no bike lanes so bicyclists are allowed use of full lane.
 priority and motor vehicles are kept at low speeds.

Home zones

 (woonerf zones)These streets are designated as "shared streets" and do not prioritize the needs of motor vehicles. Rather, it is a space where pedestrians and bicyclists are the

Colored bike lanes-
Bike lanes which have special coloring to provide a distinct visual definition that the space is designated for bicyclists.

Contra flow bike lane-A designated bicycle lane marked to allow bicyclists to travel against the flow of traffic on a oneway street.

Bicycle traffic lightLights on roadways which have specific bicycle symbols that illuminate to direct bicycle traffic.
Inventory of Existing Bicycle Routes

U.S. Bicycle Route System Corridor Plan

U.S. Bicycle Route Policy

Most bus fleets in major cities are equipped for bicycles.

Forty-three cities report that 100% of their city buses are equipped with bicycle racks. This is up 43% from 2007 when just 30 cities reported that 100% of their buses had racks. New York remains the only major U.S. city with no bicycle racks on buses. Regarding bicycle parking at bus stops, cities average 1.3 bicycle parking spaces for every 10,000 residents. This is up 8% since the 2010 Benchmarking Report.

Legend:

[^13]
Bike-Transit Integration

City		Hrs bikes allowed on trains/ hrs trains operated	Bike parking at transit		
			\# of bicycle parking spaces at bus stops(1)	Bike parking spaces per 10,000 people(1)	\% of transit stops with bicycle parking
Albuquerque	100\%	105/105	*	*	100.0\%
Arlington, TX	\varnothing	\varnothing	*	*	\varnothing
Atlanta	100\%	139.25/139.25	*	*	*
Austin	100\%	40/40	156	1.97	1.0\%
Baltimore	100\%	168/168	*	*	*
Boston	50\%	98/140	0	0.00	*
Charlotte	100\%	137/137	51	0.72	*
Chicago	100\%	148/168	*	*	92.0\%
Cleveland	*	*	6	0.14	*
Colorado Springs	100\%	\varnothing	0	0.00	*
Columbus	100\%	\varnothing	54	0.70	0.6\%
Dallas	100\%	140/140	15	0.12	*
Denver	99\%	168/168	682	11.17	15.0\%
Detroit	25\%	*	*	*	0.0\%
El Paso	100\%	*	74	1.19	*
Fort Worth	100\%	107.5/107.5	18	0.25	0.2\%
Fresno	100\%	\varnothing	30	0.63	5.0\%
Honolulu	100\%	\varnothing	18	0.48	0.5\%
Houston	95\%	*	442	1.95	90.0\%
Indianapolis	100\%	*	*	*	*
Jacksonville	100\%	\varnothing	131	1.61	12.0\%
Kansas City, MO	98\%	\varnothing	18	0.37	0.0\%
Las Vegas	100\%	\varnothing	*	*	*
Long Beach	100\%	140/*	28	0.61	*
Los Angeles	100\%	130/150	272	0.71	83.5\%
Louisville	100\%	\varnothing	0	0.00	*
Memphis	100\%	107/107	0	0.00	0.1\%
Mesa	100\%	100/100	0	0.00	60.0\%
Miami	100\%	113/113	0	0.00	*
Milwaukee	100\%	0/60	*	*	*
Minneapolis	100\%	168/168	301	7.81	*
Nashville	100\%	34/34	0	0.00	25.0\%
New Orleans	100\%	\varnothing	*	*	1.0\%
New York	0\%	168/168	8	0.01	8.9\%
Oakland	100\%	120/140	0	0.00	92.0\%
Oklahoma City	100\%	\varnothing	0	0.00	*
Omaha	100\%	\varnothing	*	*	0.0\%
Philadelphia	100\%	103/133	*	*	*
Phoenix	100\%	140/140	54	0.34	*
Portland, OR	100\%	140/140	420	7.41	6.0\%
Raleigh	100\%	\varnothing	*	*	0.5\%
Sacramento	100\%	*	*	*	*
San Antonio	100\%	\varnothing	8	0.06	0.8\%
San Diego	100\%	152/152	0	0.00	*
San Francisco	100\%	100/120	544	6.67	*
San Jose	100\%	145/145	259	2.68	*
Seattle	100\%	131/131	2,390	38.76	*
Tucson	100\%	\varnothing	59	1.08	*
Tulsa	100\%	\varnothing	*	*	1.0\%
Virginia Beach	100\%	\varnothing	*	*	1.0\%
Washington, DC	100\%	105/135	*	*	100.0\%(3)
Mean/Average	95\%	91\%	173	2.5 (2)	26.8\%
Median	100\%	100\%	18	0.3	3.0\%
High	100\%	100\%	2,390	61.4	100.0\%
Low	0\%	0\%	0	0.0	0.0\%

Sources: City surveys 2010/2011 (1) APTA 2011 Note: (2) Average weighted. (3) 100% of rail stops have bike parking; percentage for bus stops unknown.

5: EDUCATION AND ENCOURAGEMENT

2 of the " 5 Es"

Education and encouragement are two of the often cited " 5 Es" needed for making a community bicycle and pedestrian friendly. Both bicyclists and motorists need education on how to safely share the road and navigate traffic. Widespread education efforts can contribute to safer roadways for all. Encouragement is also needed to promote the spread of bicycling and walking as means of transport, recreation, and physical activity.

The 2010 Benchmarking Report was the first to establish benchmarks for bicycle and pedestrian education and encouragement efforts. Many states and cities
have implemented programs and events with these aims but have had no way to evaluate their success compared to others. This report builds on data from the previous report to track progress of these efforts.

Educating Professionals

This report measured education efforts in two areas: professional education and public education. The first refers to the education professionals receive that contributes to the promotion and safety of bicycling and walking. Included is

Bike/Ped Professional Education in States

State	Bicycling enforcement police academy requirement	Bicycling enforcement police continuing training	Annual statewide bike/ped conference (1)
Alabama		\checkmark	
Alaska			
Arizona		\checkmark	
Arkansas			
California	\checkmark	\checkmark	\checkmark (3)
Colorado			$\checkmark \star_{(2,4)}$
Connecticut		\checkmark	
Delaware			\checkmark (2)
Florida		\checkmark	\checkmark (5)
Georgia		\checkmark	$\checkmark \star_{(2)}$
Hawaii			
Idaho			
Illinois	\checkmark	\checkmark	
Indiana	\checkmark	\checkmark	\checkmark (2)
lowa	\checkmark	\checkmark	\checkmark (2)
Kansas		\checkmark	$\checkmark \star$
Kentucky	\checkmark	\checkmark	$\checkmark \star$
Louisiana	\checkmark	\checkmark	
Maine		\checkmark	\checkmark
Maryland		\checkmark	\checkmark
Massachusetts	\checkmark	\checkmark	\checkmark
Michigan		\checkmark	\checkmark (2)
Minnesota		\checkmark	\checkmark (2)
Mississippi	\checkmark		
Missouri	\checkmark	\checkmark	(7)
Montana			
Nebraska		\checkmark	
Nevada		\checkmark	\checkmark
New Hampshire	\checkmark		
New Jersey	\checkmark		$\checkmark \star$
New Mexico		\checkmark	
New York		\checkmark	
North Carolina		\checkmark	
North Dakota			
Ohio	\checkmark	\checkmark	$\checkmark \star$
Oklahoma		\checkmark	
Oregon	\checkmark	\checkmark	$\checkmark \star$
Pennsylvania		\checkmark	$\checkmark \star$
Rhode Island	\checkmark	\checkmark	$\checkmark \star$
South Carolina	\checkmark	\checkmark	(7)
South Dakota			$\checkmark \star_{(2)}$
Tennessee		\checkmark	
Texas	\checkmark	\checkmark	$\checkmark \star_{(3)}$
Utah		\checkmark	$\checkmark \star{ }_{(2)}$
Vermont	\checkmark		
Virginia		\checkmark	
Washington	\checkmark	\checkmark	$\checkmark \star_{(3,6)}$
West Virginia		\checkmark	(7)
Wisconsin	\checkmark	\checkmark	\checkmark (3)
Wyoming	\checkmark		
\# of states responding yes	20	36	25
Mean/Average	No	Yes	\varnothing

Professional education on bicycling and walking is growing.

Twenty states (40%) report that bicycling enforcement is a police academy requirement. This is up from just 11 states as of the 2010 Benchmarking Report. Twenty-five states report having a statewide bicycle and pedestrian conference (up from 16).

Sources: State surveys 2010/2011, LAB 2011 Notes: (1) Statewide bike/ped conference refers to an educational and networking event that brings together professionals working on bicycle and pedestrian issues including government officials, planners, educators, and advocates. (2) Bicycle conference only. (3) Biennial. (4) Hosted by Bicycle Colorado. (5) Annual conference 2005-2010; is not planned for 2011 because of budget cuts; may be reconsidered in future. (6) Trails conference includes bicycle and pedestrian issues. (7) Former conference no longer active.

[^14]the education of police officers in bicycle laws and safety and the education of government employees and other professionals working to promote, plan, and implement policies and provisions for bicycling and walking.

Police Training

Police officers without training in bicycle laws may not understand or uphold bicyclists' or pedestrians' rights in traffic crashes, incorrectly stop or ticket bicyclists, or set a bad example of the law for other motorists. Education of law enforcement in bicycle safety and laws pertaining to bicycling is critical to furthering bicycling safety and rights.

Data on police officer education come from the League of American Bicyclists' Bicycle Friendly State surveys. According to these surveys, 20 include bicycling enforcement as a Police Academy requirement and 36 states include bicycling enforcement in their police continuing education training.

Bicycle and Pedestrian Conferences

Bicycle and pedestrian professionals need opportunities for continuing edu-
cation, networking, and collaboration to further their work and profession. Many states now hold annual bicycle and pedestrian conferences or summits that provide bicycle and pedestrian professionals an opportunity for learning, networking, and planning. Sixteen states report having hosted a statewide bicycle and pedestrian conference and another nine have hosted a statewide bicycle conference. Of these, 21 are annual and four are biennial. Colorado and Texas noted that their conferences are coordinated by statewide advocacy organizations.

Educating the Public

Educating the public is a critical component of creating bicycling and walking friendly communities. From street-side messages of share-the-road campaigns to driver's test questions, states and cities are working to promote the safety of the most vulnerable road users. For this section we relied on data from state surveys, the League of American Bicyclists' Bicycle Friendly States Program, and the National Center for Safe Routes to School. State benchmarks include whether states have a public safety (or
(Continued page 115)

Public Education and Events in States

State	Share the Road/ public safety campaign	Info on bicycling in driver's manual	Driver's test questions on bicycling	Statesponsored ride to promote bicycling/ activity	\# of schools participating in Walk to School Day
Alabama		\checkmark			23
Alaska	\checkmark	\checkmark	\checkmark		9
Arizona	\checkmark	\checkmark	\checkmark		116
Arkansas					9
California		\checkmark		\checkmark	429
Colorado	\checkmark	\checkmark	\checkmark		215
Connecticut	\checkmark	\checkmark	\checkmark		17
Delaware	\checkmark	\checkmark		\checkmark	10
Florida	\checkmark	\checkmark	\checkmark	\checkmark	225
Georgia	\checkmark	\checkmark			111
Hawaii	\checkmark	\checkmark	\checkmark		1
Idaho	\checkmark	\checkmark			47
Illinois	\checkmark	\checkmark	\checkmark		186
Indiana	\checkmark	\checkmark	\checkmark		28
lowa	\checkmark	\checkmark	\checkmark		41
Kansas	\checkmark	\checkmark		\checkmark	56
Kentucky	\checkmark	\checkmark		\checkmark	12
Louisiana	\checkmark	\checkmark	\checkmark		28
Maine	\checkmark	\checkmark	\checkmark		7
Maryland	\checkmark	\checkmark	\checkmark	\checkmark	81
Massachusetts	\checkmark	\checkmark	\checkmark	\checkmark	147
Michigan		\checkmark			164
Minnesota	\checkmark	\checkmark	\checkmark	\checkmark	27
Mississippi	\checkmark	\checkmark	\checkmark		130
Missouri		\checkmark	\checkmark	\checkmark	44
Montana		\checkmark		*	27
Nebraska		\checkmark	\checkmark		27
Nevada	\checkmark	\checkmark	\checkmark		37
New Hampshire	\checkmark	\checkmark	\checkmark	\checkmark	18
New Jersey	\checkmark	\checkmark			80
New Mexico		\checkmark	\checkmark	*	78
New York	\checkmark	\checkmark			81
North Carolina	\checkmark	\checkmark	\checkmark		84
North Dakota		\checkmark			6
Ohio	\checkmark	\checkmark		\checkmark	108
Oklahoma	\checkmark	\checkmark	\checkmark		85
Oregon	\checkmark	\checkmark			164
Pennsylvania		\checkmark			58
Rhode Island	\checkmark	\checkmark	\checkmark	\checkmark	18
South Carolina	\checkmark	\checkmark	\checkmark		129
South Dakota		\checkmark	\checkmark	\checkmark	7
Tennessee	\checkmark	\checkmark		\checkmark	49
Texas	\checkmark	\checkmark	\checkmark		84
Utah	\checkmark	\checkmark	\checkmark		31
Vermont	\checkmark	\checkmark	\checkmark		20
Virginia	\checkmark	\checkmark	\checkmark	\checkmark	54
Washington	\checkmark	\checkmark	\checkmark	\checkmark	31
West Virginia		\checkmark			32
Wisconsin	\checkmark	\checkmark	\checkmark		59
Wyoming	\checkmark	\checkmark	\checkmark	\checkmark	6
\# of states responding yes	38	49	32	17	\varnothing
Mean/Average	Yes	Yes	Yes	No	71

[^15]Sources: State surveys 2010/2011, LAB 2011, National Center for Safe Routes to School 2011

Bicycle Promotion in Cities

84% of cities report having Bike to Work Day events.

Legend:

$\checkmark=$ Yes
$\varnothing=$ Not applicable
= Officials could
not access data
\star = New since 2010
Benchmarking Report

City	Bicycle education courses		Bike to Work Day events	Open street initiatives (4)	Citysponsored bicycle ride	Public bike share program
	Youth	Adult				
Albuquerque	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$		(1)
Arlington, TX	$\checkmark \star$ (3)	$\checkmark \star{ }_{(3)}$	$\checkmark \star$			
Atlanta	(2)	\checkmark	\checkmark	$\checkmark \star$		
Austin	$\checkmark \star$	\checkmark	\checkmark	(1)	*	(1)
Baltimore	(1,2)	(1)	\checkmark	\checkmark	\checkmark	(1)
Boston	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
Charlotte	\checkmark	\checkmark	\checkmark		\checkmark	
Chicago	\checkmark	$\checkmark \star$	\checkmark	(5)	$\checkmark \star$	\checkmark
Colorado Springs	*	\checkmark	\checkmark		$\checkmark \star$	
Columbus	\checkmark	\checkmark	\checkmark		\checkmark	
Dallas	$\checkmark \star$	\checkmark			\checkmark	(1)
Denver	\checkmark	$\checkmark \star$	\checkmark	(1)	\checkmark	\checkmark
El Paso				$\checkmark \star$	$\checkmark \star$	(1)
Fort Worth	$\checkmark \star$		$\checkmark \star$			(1)
Fresno	\checkmark	$\checkmark \star$	\checkmark		$\checkmark \star$	
Honolulu	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
Houston	\checkmark	\checkmark	\checkmark		\checkmark	(1)
Jacksonville	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$			
Kansas City, MO	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \star$	(1)
Las Vegas	$\checkmark \star$					
Long Beach	\checkmark	\checkmark	$\checkmark \star$	\checkmark	\checkmark	(1)
Los Angeles	$\checkmark \star$	\checkmark	\checkmark	$\checkmark \star$		(1)
Louisville	\checkmark	\checkmark	\checkmark	$\checkmark \star$	\checkmark	(1)
Memphis	$\checkmark \star$	\checkmark	$\checkmark \star$		\checkmark	
Mesa	\checkmark		\checkmark		\checkmark	(1)
Miami		\checkmark	*	\checkmark	$\checkmark \star$	(1)
Milwaukee	\checkmark	\checkmark	$\checkmark \star$		*	
Minneapolis	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Nashville			\checkmark		\checkmark	\checkmark
New Orleans	$\checkmark \star$	$\checkmark \star$				
New York	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
Oakland	\checkmark	\checkmark	\checkmark	$\checkmark \star$	$\checkmark \star$	
Oklahoma City		\checkmark	\checkmark			(1)
Omaha	\checkmark	\checkmark	\checkmark		\checkmark	(1)
Philadelphia	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
Phoenix		\checkmark	\checkmark	\checkmark	\checkmark	(1)
Portland, OR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
Raleigh			\checkmark		$\checkmark \star$	(1)
Sacramento	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$		$\checkmark \star$	(1)
San Antonio	$\checkmark \star$	$\checkmark \star$	$\checkmark \star$	(1)	$\checkmark \star$	(1)
San Diego	\checkmark	\checkmark	\checkmark		*	(1)
San Francisco	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(1)
San Jose	\checkmark	\checkmark	\checkmark	$\checkmark \star$	\checkmark	(1)
Seattle	\checkmark	\checkmark	\checkmark	\checkmark		(1)
Tucson	\checkmark	\checkmark	\checkmark	$\checkmark \star$		
Tulsa	$\checkmark \star$	$\checkmark \star$	\checkmark	*	*	*
Virginia Beach		$\checkmark \star$	\checkmark			
Washington, DC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\# of cities responding yes	38	41	43	21	32	5
Mean/Average	Yes	Yes	Yes	No	Yes	No

Source: City surveys 2010/2011 Notes: Cleveland, Detroit, and Indianapolis did not provide data requested for this chart. (1) In development. (2) Previous education program lost funding and agency is working on reinstating. (3) New in 2011. (4) Open streets are events where streets are temporarily closed to cars and are also known as "ciclovias." "Sunday parkways," and by other names. (5) Initiative no longer in operation or is currently inactive.
"Share the Road") campaign, whether states include driver's manual and driver's test information on bicyclists, and the number of schools participating in National Walk and Bike to School Day, and whether a state has a statesponsored ride to promote bicycling or physical activity (and how many participants). City education benchmarks include the presence of youth and adult bicycle education courses and participation levels in these courses.

Share the Road Campaigns

 "Share the Road" is perhaps the most common slogan used in bicycle education. Share the Road campaigns are widespread and can take many forms. Many states have Share the Road signs on roadways. Others have Share the Road bumper stickers. Some states have sophisticated campaigns with public service announcements including ads on buses, billboards, radio, and television. The basic message is always the same, encouraging bicyclists and motorists to obey traffic laws and show respect to other road users. Thirty-eight states report having a Share the Road or similar public safety campaign.
Driver Education

Driver education is a unique opportunity to instill knowledge about traffic laws and safety that individuals will use to form habits for years to come. The League of American Bicyclists' Bicycle Friendly State surveys collect information from states on whether information on bicycling is included in the state driver's manual and whether questions on sharing the roadway with bicyclists are included on the state driver's exam. Arkansas is the only state that does not include information on
bicycling in its state driver's manual. Thirty-two states include driver's test questions on bicyclists.

Bicycle Education

Although nearly everyone must have some form of driver's education before receiving a license, there is no education requirement to ride a bicycle. Yet having knowledge and skills to properly handle a bicycle in traffic can improve safety for bicyclists and make them better motorists. Bicycle education teaches youth and adults the rules of the road, how to properly handle a bicycle in traffic, and how to respectfully share the road with other users.

The Alliance survey on youth and adult bicycle education courses reveals that 41 cities (80% of cities surveyed, up from 35 cities 2 years ago) have adult bicycle education courses, and 38 cities (Continued page 120)

Adult Bicycle Education Courses

City	Participation - \# of adults					\# adults per 1 participant				
	2006	2007	2008	2009	2010	2006	2007	2008	2009	2010
Atlanta	*	110	274	116	101	*	3,106	1,247	3,694	4,243
Austin	50	50	80	\varnothing	108	11,545	11,545	7.215	\varnothing	5,696
Baltimore	*	*	30	(1)	(1)	*	*	16,149	\varnothing	\varnothing
Boston	*	*	200	*	*	*	*	2,483	*	*
Colorado Springs	*	12	20	*	*	*	24,343	14,606	*	*
Chicago	*	*	*	*	200	*	*	*	*	10,910
Columbus	30	30	30	150	200	18,569	18,569	18,569	3,962	2,972
Dallas	-	66	124	300	300	*	13,716	7,300	3,188	3,188
Denver	*	*	*	39	64	*	*	*	12,057	7,347
Fresno	*	*	*	18	30	*	*	*	18,475	11,085
Houston	300	400	600	*	*	5,049	3,787	2,524	*	*
Indianapolis	*	*	30	*	*	*	-	19,297	*	*
Kansas City, MO	*	120	*	0	118	*	2,754	-	\varnothing	3,126
Long Beach	*	16	70	*	*	*	20,910	4,779	*	*
Los Angeles	*	*	*	351	135	*	*	*	8,260	21,477
Louisville	60	120	60	50	50	7.111	3,556	7,111	8,659	8,659
Memphis	*	*	*	300	400	*	*	*	1,644	1,233
Miami	16	-	17	*	*	17,441	*	16,415	*	*
Milwaukee	10	20	25	100	200	41,919	20,959	16,768	4,436	2,218
Minneapolis	*	*	335	1,707	1,678	*	*	849	178	181
Nashville	30	30	30	(1)	(1)	15,229	15,229	15,229	\varnothing	\varnothing
New Orleans	*	*	*	0	20	*	*	*	\varnothing	13,928
New York	101	429	945	1,307	1,785	63,083	14,852	6,742	4.974	3,642
Oakland	*	35	114	114	137	*	7.997	2,455	2,807	2336
Omaha	10	*	*	20	25	28,076	-	-	16,808	13,447
San Francisco	250	300	389	1,000	1,000	2,632	2,193	1,691	698	698
San Jose	200	200	200	250	200	3,505	3,505	3,505	2,878	3,598
Seattle	*	*	*	1,000	1,000	*	*	*	524	524
Tucson	400	400	500	562	*	1,000	1,000	800	738	*
Virginia Beach	*	*	*	0	20	*	*	*	\varnothing	16,378
Washington, DC	*	*	*	434	893	*	*	*	1,120	544
Mean/Average	121	146	204	372	394	$\underset{(2)}{8,773}$	$\begin{array}{\|c} 6,230 \\ \hline \end{array}$	$\begin{gathered} 4.016 \\ \text { (2) } \end{gathered}$	$\begin{gathered} 2,345 \\ \hline \end{gathered}$	$\begin{gathered} 2,391 \\ \hline(2) \\ \hline \end{gathered}$
Median	55	88	97	150	169	13,387	9,771	6,927	3,441	3,620
High	400	429	945	1,707	1,785	63,083	24,343	19,297	18,475	21,477
Low	10	12	17	0	20	1,000	1,000	800	178	181

Source: City surveys 2008/2009 and 2010/2011 Notes: The following cities reported having adult bicycle education courses in at least one year, but did not provide data on participation: Albuquerque, Arlington, TX, Charlotte, Fort Worth, Honolulu, Jacksonville, Oklahoma City, Philadelphia, Phoenix, Portland, OR, Sacramento, San Antonio, San Diego, and Tulsa. All other cities not included in this table reported no adult bicycle education courses. (1) This city reports no longer having adult bicycle education courses. (2) Weighted average.

Legend:

* $=$ Officials could not access data
$\varnothing=$ Not applicable
- High value
= Low value

> Adult bicycle education participation has grown 267\% in the last 4 years.

Forty-one of the cities surveyed for this report say their city has adult bicycle education courses. Since 2006, participation in these courses has been on the rise with the average number of participants increasing 267% in just four years. In 2010 these courses attracted an average of one person per 2,391 adults.

Adult Bicycle Education: Adults Per One Participant

Source: City surveys 2008/2009 and 2010/2011, ACS 2009 Notes: 3-year average data between 2008 and 2010 used with the following exceptions: 1-year data used for: Baltimore, Boston, Chicago, Colorado Springs, Houston, Indianapolis, Kansas City, MO, Long Beach, Miami, Nashville, New Orleans, Virginia Beach; 2-year average used for: Austin, Denver, Fresno, Los Angeles, Memphis, Omaha, Seattle, Tucson, Washington, DC. The following cities reported having adult bicycle education courses in at least one year, but did not provide data on participation: Albuquerque, Arlington, Charlotte, Fort Worth, Honolulu, Jacksonville, Oklahoma City, Philadelphia, Phoenix, Portland, Sacramento, San Antonio, San Diego, Tulsa. All other cities not included in this table reported no adult bicycle education courses.

One out of every 403 Minneapolis adults was a bicycle education participant, on average, between 2008-2010. Seattle, Tucson, and Washington, DC, also rank among the cities with the highest levels of participation in adult bicycle education courses.

Minneapolis leads cities for adult bicycle education participation.

Youth ${ }_{\text {® }}$ Bicycle Education Courses

City	Participation - \# of youth					\# of youth per one participant				
	2006	2007	2008	2009	2010	2006	2007	2008	2009	2010
Albuquerque	*	*	*	10,000	10,000	*	*	*	13	13
Atlanta	*	300	34	(1)	(1)	*	303	2,671	\varnothing	\varnothing
Austin	*	*	*	1,500	1,000	*	*	*	117	175
Boston	*	*	300	800	2,600	*	*	388	139	43
Chicago	*	*	*	*	1,200	*	*	*	*	557
Columbus	3,800	4,200	4,500	4,000	4,000	46	42	39	45	45
Dallas	*	*	*	15	30	*	*	*	22,879	11,439
Honolulu	5,000	5,000	5,000	5,000	5,000	12	12	12	13	13
Houston	*	*	2,050	*	*	*	*	260	*	*
Long Beach	\varnothing	\varnothing	2,070	*	*	\varnothing	\varnothing	60	*	*
Los Angeles	*	*	*	7,851	2,427	*	*	*	119	384
Louisville	30	60	60	0	25	4,491	2,246	2,246	\varnothing	5,341
Memphis	*	*	*	75	100	*	*	*	2,445	1,834
Mesa	*	*	*	200	600	*	*	*	611	204
Milwaukee	500	800	1,025	4,500	5,000	326	204	159	36	32
Minneapolis	125	150	180	1,126	729	534	445	371	72	112
Nashville	250	500	1,000	(1)	(1)	546	273	136	\varnothing	\varnothing
New Orleans	*	*	*	0	50	*	*	*	\varnothing	1,526
New York	*	658	857	4,410	7,241	\varnothing	2,892	2,221	429	261
Oakland	520	673	613	983	1,469	152	117	129	91	61
Omaha	1,000	1,000	1,000	(1)	(1)	94	94	94	\varnothing	\varnothing
Portland, OR	*	*	*	2,558	1,315	*	*	*	44	85
Sacramento	*	*	*	4,000	4,000	*	*	*	30	30
San Francisco	*	2000	3000	*	*	*	54	36	*	*
San Jose	25,000	25,000	25,000	22,008	19,967	9	9	9	11	12
Seattle	*	*	*	19,500	20,600	*	*	*	5	4
Tucson	*	*	*	875	*	*	*	*	148	*
Washington, DC	*	*	*	5,608	2,389	*	*	*	20	48
Mean/Average	4,466	3,337	2,917	4,524	4,273	31 (2)	80 (2)	88 (2)	58 (2)	67 (2)
Median	520	737	1,000	2,558	2,389	152	161	148	72	85
High	25,000	25,000	25,000	22,008	20,600	4,491	2,892	2,671	22,289	11,439
Low	30	60	34	0	25	9	9	9	5	4

Source: City surveys 2008/2009 and 2010/2011 Notes: The following cities reported having youth bicycle education courses in at least one year, but did not provide data on participation: Arlington, TX, Baltimore, Charlotte, Denver, For Worth, Fresno, Indianapolis, Jacksonville, Kansas City, MO, Las Vegas, Philadelphia, San Antonio, San Diego, Tulsa, and Virginia Beach. All other cities not included in this table reported no youth bicycle education courses. (1) This city reports no longer having youth bicycle education courses. (2) Weighted average. (3) "Youth" includes

Legend:

* $=$ Officials could not access this data
$\varnothing=$ Not applicable
= High value
= Low value all residents under age 18.

One of every 67 youth participate in bicycle education

 courses in majorThirty-seven of the cities surveyed for this report have youth bicycle education courses. On average, 1 out of 67 youth (under age 18) attend a youth bicycle education course in these cities (in 2010). Seattle has the high value for youth bicycle participation in 2010 with 20,600 participants. One of every four Seattle youth participated in bicycle education in 2010.

Youth $_{*}$ Bicycle Education: Youth per One Participant

Sources: City surveys 2008/2009 and 2010/2011, ACS 2009 Notes: 3-year average data between 2008 and 2010 used with the following exceptions: 1-year data used for: Atlanta, Chicago, Houston, Long Beach, Nashville, Omaha, San Francisco, and Tucson; 2-year average used for: Albuquerque, Austin, Dallas, Los Angeles, Louisville, Memphis, Mesa, Oakland, Portland, OR, Sacramento, Seattle, and Washington, DC. The following cities reported having youth bicycle education courses in at least one year, but did not provide data on participation: Arlington, Baltimore, Charlotte, Denver, For Worth, Fresno, Indianapolis, Jacksonville, Kansas City, MO, Las Vegas, Philadelphia, San Antonio, San Diego, Tulsa, and Virginia Beach. All other cities not included in this table reported no youth bicycle education courses. (3) "Youth" includes all residents under age 18.

One out of every five youth in Seattle participate in bicycle education courses. San Jose, Honolulu, Albuquerque, and Sacramento also lead other major U.S. cities in participation levels for youth bicycle education courses.

> Seattle now leads cities for youth bicycle education participation.
(75% of cities surveyed, up from 30 cities 2 years ago) have youth bicycle education courses. These education courses vary in that some are sponsored by the local government, some by a local nonprofit or advocacy organization, some by the local police department, and others are the result of partnerships between multiple agencies. Surveys also reveal that city adult bicycle education courses averaged one participant per 2,391 adults, and youth courses average one participant per 67 youth residents (in 2010).

Encouragement Programs and Events

Encouragement programs are those activities which support and promote bicycling and walking. There are many different types of encouragement activities, but this report looked at four specific types of common encouragement events: Bike to Work Day, Walk and Bike to School Day, city-sponsored bicycle rides, and open streets (ciclovia) initiatives. This report also looked at participation levels of these efforts to establish benchmarks and baseline data to measure progress among cities going forward.

Bike to Work Day

Bike to Work Day is an annual event held on the third Friday in May throughout most of the United States and Canada. Since the League of American Bicyclists organized the first Bike to Work Day in 1956, the day has been a rallying point for bicycle advocates to promote bicycling as a healthy and fun

[^0]: Bike Walk Virginia, Kimberly Likens Perry
 BikeDenver, Lise Neer
 Boston Bikes, Nicole Freedman
 California Bicycle Coalition, David Hoffman
 California Department of Transportation, Penny Gray and Ann Mahaney
 Capitol Region Council of Governments, Sandy Fry
 Cascade Bicycle Club, Chuck Ayers
 Charlotte Department of Transportation, Ken Tippette
 Chicago Department of Transportation, Ben Gomberg
 City of Albuquerque, Jim Arrowsmith
 City of Arlington, Lyndsay Mitchell and Alicia Winkelblech
 City of Austin, Nadia Barrera, Annick Beaudet, and John Eastman
 City of Baltimore, Nate Evans
 City of Colorado Springs, Kristin Bennett and Tim Roberts
 City of Dallas, Max Kalhammer
 City of Denver, Emily Snyder
 City of El Paso, Jared Mendoza
 City of Fort Worth, Julia McCleeary
 City of Fresno, Bryan Jones
 City of Houston, Rita Balchus and Dan Raine
 City of Jacksonville, James Reed
 City of Kansas City, Deb Ridgway
 City of Las Vegas, Connie Diso and Greg McDermott
 City of Long Beach, Courtney Aguirre

[^1]: Source: 2007-2009 ACS Notes: This ranking is based on the combined bike and walk to work share from the 2007-2009 ACS. The number one position indicates the state and city with the highest share of commuters who commute by bicycle or foot. View graphs illustrating this data on pages 34 and 35 of this report.

[^2]: Source: FHWA FMIS 2006-2010 Notes: This ranking is based on the per capita spending of federal funds by states and cities on bicycling and walking using a 5 -year average (2006-2010). Data is based on funds obligated to projects in this period and are not necessarily the amount spent in these years. The number one position indicates the state or city with the highest amount of per capita federal funding to bicycling and walking. Due to large amounts of deobligated funds in the 5 -year period between 2006-2010, accurate funding estimates could not be obtained for Oklahoma City. View these data on pages 86-87 of this report.

[^3]: (1) For a discussion of the challenges with determining accurate levels of bicycling and walking, see Appendix 3, page 202. Appendix 3 also contains a discussion on the differences between the ACS and Census methodologies.

[^4]: Source: NHTS 2009

[^5]: Legend:
 = High value
 = Low value

[^6]: Legend:
 $\varnothing=$ Not applicable
 = High value
 = Low value

[^7]: Legend:
 $\checkmark=$ Yes
 = High value
 = Low value

[^8]: Sources: FARS 2007-2009, FHWA FMIS 2006-2010, LAB 2011 Notes: (1) Fatality data in this table are based on the 3-year average number of fatalities from 2007-2009. (2) State highway funds represent funding from the federal Highway Safety Improvement Program (HSIP).

[^9]: Source: City surveys 2010/2011 Notes: For legend, see previous page. The following top 51 population cities did not respond to these survey questions: Cleveland, Detroit, and Indianapolis; Responses of "na" and "unknown" were taken to mean "no." Cities with combined bike/ped master plans have both columns marked; cities with separate bike and ped master plans have respective columns marked. Cities with combined bike/ped advisory committees have both columns marked; cities with separate bike and ped advisory committees have respective columns marked. (1) Mountain bike plan. (2) A previously formed advisory committee has since dissolved.

[^10]: Source: State Surveys 2010/2011, FHWA FMIS 2006-2011 Notes: Legend next page. All data except \% of TE to bike/ped are based on a 5 -year average of funds obligated to projects between 2006-2010 and are not necessarily the amount spent in these years. See disclaimer regarding differences in funding reporting on page 82 of this report. (1) Of eligible federal funds. (2) of state transportation funds. (3) $\$ 6$ million of TIP funds; $\$ 450$ for admin budget from state. (4) 1% State Highway Fund, $>\$ 6$ million/yr. (5) under some specific funding programs only. (6) Blank cells should be understood to mean a "no" response. (7) This state has one of four communities nationwide selected as part of the Nonmotorized Transportation Pilot Program to receive $\$ 25$ million for bicycling and walking and therefore may reflect higher than typical funding.

[^11]: Source: FHWA FMIS 2009-2010 Notes: The District of Colum- $\begin{aligned} & \text { Legend: } \square \text { = High value } \square \text { = Low value } \\ & \text { bia is included in this table for comparison, although it is }\end{aligned}$

    ```
    Legend: = High value = Low value
    ```

 (1) Total value (2) Weighted average (3) "TE ARRA" refers to ARRA funds that were directed toward the Transportation Enhancements program.

[^12]: Source: City surveys 2010/2011, Census 2010 Notes: A survey response of "na" was taken to mean "0" for this table. (1) Weighted average. (2) Bicycle lane miles count both directions when bike lanes are on both sides of two-lane street. (3) Planned facilities includes only miles of new facilities and does not represent a combined value of existing and planned facilities. (4) Did not provide these data for 2010/2011 survey; value represents miles as of 2008/2009 Benchmarking survey (5) Open-ended.

[^13]: $\varnothing=$ Not applicable

 * = Officials could not access data = High value = Low value

[^14]: Legend:
 $\checkmark=$ Yes
 $\varnothing=$ Not applicable
 \star = New since 2010 Benchmarking Report

[^15]: Legend:
 $\checkmark=$ Yes
 $\varnothing=$ Not applicable

 * $=$ Officials could
 not access data

